- унипотентный
- adj. unipotent
Русско-английский словарь математических терминов. — Американское математическое общество. Э.Д. Лоувотер. 1990.
Русско-английский словарь математических терминов. — Американское математическое общество. Э.Д. Лоувотер. 1990.
УНИПОТЕНТНЫЙ ЭЛЕМЕНТ — элемент . линейной алгебраич. группы G, совпадающий с унипотентной компонентой gu своего Жордана разложения в группе G. Если реализовать G как замкнутую подгруппу группы GL(V)автоморфизмов конечномерного векторного пространства Vнад основным… … Математическая энциклопедия
Унипотентный элемент — Нильпотентный элемент или нильпотент ― элемент a кольца, удовлетворяющий равенству an = 0 для некоторого натурального n. Минимальное значение n, для которого справедливо это равенство, называется индексом нильпотентности элемента a. Рассмотрение… … Википедия
ДИСКРЕТНАЯ ПОДГРУППА — подгруппа Г топологич. группы G(в частности, подгруппа группы Ли), являющаяся дискретным подмножеством топологич. пространства G. В локально компактных топологич. группах (в частности, в группах Ли) выделяют решетки Д. п., для к рых… … Математическая энциклопедия
РАНГ АЛГЕБРАИЧЕСКОЙ ГРУППЫ — G размерность любой из ее Картана подгрупп (эта размерность не зависит от выбора подгруппы Картана). Наряду с Р. а. г. Gрассматриваются ее п о л у п р о с т о й р а н г и р е д у к т и в н ы й р а н г, к рые, по определению, равны соответственно… … Математическая энциклопедия
РЕДУКТИВНАЯ ГРУППА — линейная алгебраич. группа G, удовлетворяющая одному из следующих эквивалентных условий: 1) радикал связной компоненты единицы G0 группы G есть алгебраический тор, 2).унипотентный радикал группы G0 тривиален, 3) группа G0 разлагается в… … Математическая энциклопедия
УНИПОТЕНТНАЯ ГРУППА — подгруппа Uлинейной алгебраич. группы G, состоящая из унипотентных элементов. Если отождествить G с ее образом при изоморфном вложении в группу GL(V)автоморфизмов подходящего конечномерного векторного пространства V, то У. г. это подгруппа,… … Математическая энциклопедия
Редуктивная группа — Редуктивная группа алгебраическая группа для которой унипотентный радикал её компоненты единицы является тривиальным. Примеры Любая полупростая группа Ли … Википедия