- ЛЕЖАНДРА МНОГОЧЛЕНЫ
-
спец. система многочленов, ортогональных с весом 1 на отрезке [-1; 1]. Рассматривались А. Лежандром и П. Лапласом (в 1782-85).
Естествознание. Энциклопедический словарь.
спец. система многочленов, ортогональных с весом 1 на отрезке [-1; 1]. Рассматривались А. Лежандром и П. Лапласом (в 1782-85).
Естествознание. Энциклопедический словарь.
ЛЕЖАНДРА МНОГОЧЛЕНЫ — специальная система многочленов, ортогональных с весом 1 на отрезке ЛЕЖЕ (Leger) Фернан (1881 1955) французский живописец и график. Геометризованные, уподобленные машинным формам изображения современного мира, картины, посвященные труду… … Большой Энциклопедический словарь
Лежандра многочлены — специальная система многочленов, ортогональных с весом 1 на отрезке [ 1; 1]. Рассматривались А. Лежандром и П. Лапласом (в 1782 85). * * * ЛЕЖАНДРА МНОГОЧЛЕНЫ ЛЕЖАНДРА МНОГОЧЛЕНЫ, специальная система многочленов, ортогональных с весом 1 на… … Энциклопедический словарь
ЛЕЖАНДРА МНОГОЧЛЕНЫ — сферические многочлены, многочлены, ортогональные на сегменте [ 1,1] с единичным весом Стандартизованные Л. м. определяются Родрига формулой и имеют представление Наиболее употребительны формулы Л. м. можно определить как коэффициенты разложения… … Математическая энциклопедия
Лежандра многочлены — сферические многочлены, специальная система многочленов последовательно возрастающих степеней. Впервые рассматривалась А. Лежандром и П. Лапласом (в 1782 85) независимо друг от друга. Для n = 0,1,2,... Л. м. Р (х) могут быть определены… … Большая советская энциклопедия
Многочлены Чебышёва — две последовательности многочленов Tn(x) и Un(x), названные в честь Пафнутия Львовича Чебышёва. Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в… … Википедия
Многочлены Эрмита — Многочлены Эрмита определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике. Эти многочлены названы в честь Шарля Эрмита. Содержание 1… … Википедия
Многочлены Полачека — Многочлены Полачека последовательность многочленов , которые были рассмотрены Полачеком в 1950 году. Рекурсивное определение … Википедия
Многочлены Лежандра — Многочлен Лежандра многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов… … Википедия
Многочлены Чебышева — Многочлены Чебышева две последовательности ортогональных многочленов и , названные в честь Пафнутия Львовича Чебышева. Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода… … Википедия
Многочлены Лагерра — В математике, Многочлены Лагерра, названные в честь Эдмона Лагерра (1834 1886), являются каноническими решениями Уравнения Лагерра: являющегося линейным дифференциальным уравнением второго порядка. Многочлены Лагерра также используются в… … Википедия