Объединение (Сложение) Классов (Множеств)


Объединение (Сложение) Классов (Множеств)
а- логинческая операция, позволяющая из исходных классов образовынвать новый класс (множество), в который войдут все элементы каждого из исходных классов. Так, в результате О. к. спортсменов (А) и класса студентов (В) мы получим класс людей, состоящий из студентов, не являющихся спортсменами, из спортсменов, не являющихся студентами, и из тех людей, которые одновременно являются и студентами, и спортсменами. Вся заштрихованная понверхность рисунка будет представлять собой О. к. студентов и спортнсменов. Символически полученный результат объединения запинсывают в виде выражения A ¥ В (см.: Круги Эйлера).

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. . 1997.

Смотреть что такое "Объединение (Сложение) Классов (Множеств)" в других словарях:

  • Механогенные осадочные породы — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (11 мая 2011) …   Википедия

  • Замкнутые классы булевых функций — Замкнутый класс в теории булевых функций  такое множество функций алгебры логики, замыкание которого относительно операции суперпозиции совпадает с ним самим: . Другими словами, любая функция, которую можно выразить формулой с использованием …   Википедия

  • Натуральное число — Натуральные числа можно использовать для счёта (одно яблоко, два яблока и т. п.). Натуральные числа (естественные числа)  числа, возникающие естественным образом при счёте (как в смысле перечисл …   Википедия

  • Натуральные числа — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… …   Википедия

  • С++ — См. также: Си (язык программирования) C++ Семантика: мультипарадигмальный: объектно ориентированное, обобщённое, процедурное, метапрограммирование Тип исполнения: компилируемый Появился в: 1985 г. Автор(ы): Бьёрн Страуструп …   Википедия

  • Класс P — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отр …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.