- нечеткое множество
- множество с нечеткими границами, когда переход от принадлежности элементов множеству к непри-надлежности их множеству происходит постепенно, нерезко. В классической логике элемент х из соответствующей предметной области принадлежит или не принадлежит некоторому множеству М. Характеристическая функция принадлежности элемента множеству принимает лишь два значения: 1, когда х действительно принадлежит М, и 0, когда х не принадлежит множеству М. Напр., к.-л. геометрическая фигура либо принадлежит множеству треугольников, либо не принадлежит ему. С Н. м. дело обстоит иначе. Здесь элемент х принадлежит множеству A (где A - Н. м.) лишь с известной степенью. Так, различные элементы х Н. м. "высокие люди" могут принадлежать ему лишь с известной степенью, т. к. рост высоких людей может варьироваться. Среди них мы можем выделить людей, которые принадлежат множеству высоких людей со степенью принадлежности 1 (т. е. безусловно высоких людей, которые могут рассматриваться как некоторые образцы, классические случаи). С другой стороны, некоторые люди не принадлежат множеству высоких людей, их степень принадлежности множеству высоких людей равна 0. Между 0 и 1 будут располагаться группы людей, которые принадлежат к высоким людям лишь с известной степенью (0,2; 0,4; 0,5 и т. д.). Эти группы можно классифицировать по степени их принадлежности данному множеству. В настоящее время разрабатываются различные методы установления, вычисления степеней принадлежности. Н. м. можно превратить в четкое на основе определения, включающего некоторый момент условности, напр.: "Высокими людьми мы будем называть людей, имеющих рост 180 см и выше". Тогда всех людей можно разделить на два исключающих друг друга множества: множество невысоких людей и множество высоких людей. Однако такого рода превращения Н. м. в четкие обычно связаны со значительным огрублением изучаемой действительности: с отвлечением от различий внутри Н. м., которые могут оказаться существенными для познания и практики. Понятие Н. м. родственно понятию о реальном типе, где элементы объема этого понятия образуют некоторый упорядоченный ряд по степени принадлежности Н. м., в котором одни подмножества Н. м. связаны с другими недостаточно определенными "текучими" переходами, где границы множества недостаточно четки. К числу понятий о реальных типах относятся: "справедливая война", "храбрый человек", "управляемая система", "реалистическое произведение" и т. п. Множество элементов, относящихся к Н. м. с весьма высокой степенью принадлежности, лежит в основе образования понятия об идеальном типе. К числу понятий об идеаль-ном типе относятся понятия об абсолютно черном теле, идеальном газе и др.
Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. А.А.Ивин, А.Л.Никифоров. 1997.