счетная подгруппа

счетная подгруппа
мат. countable subgroup

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем написать реферат

Смотреть что такое "счетная подгруппа" в других словарях:

  • АБЕЛЕВА ГРУППА — разрешимости алгебраич. уравнений в радикалах. Обычно для обозначения операции в А. г. используется аддитивная запись, т. е. знак + для самой операции, наз. сложением, знак 0 для нейтрального элемента, наз. нулем (в мультипликативной записи он… …   Математическая энциклопедия

  • ВЫБОРА АКСИОМА — одна из аксиом теории множеств, гласящая: для всякого семейства Fнепустых множеств существует функция f такая, что для всякого множества Sиз Fимеет место (при этом f наз. функцией выбора на F). Для конечных семейств FВ. а. выводима из остальных… …   Математическая энциклопедия

  • КОНЕЧНО ПОРОЖДЕННАЯ ГРУППА — группа G, обладающая конечным порождающим множеством М= {а 1,.... ad}. Состоит из всевозможных произведений где Если Мсодержит dэлементов, то Gназ. d n орожденной. Из любого порождающего множества К. п. г. можно выбрать конечное порождающее… …   Математическая энциклопедия

  • РАНГ ГРУППЫ — (общий и специальный) понятие теории групп. Группа G имеет конечный общий р а н г r, если r наименьшее число с тем свойством, что всякая конечно порожденная подгруппа группы Gсодержится в подгруппе, обладающей r образующими . Группа G имеет… …   Математическая энциклопедия

  • ЛОКАЛЬНО СВОБОДНАЯ ГРУППА — группа, каждая конечно порожденная подгруппа к рой свободна (см. Свободная группа). Таким образом, счетная Л. с. г. является объединением возрастающей цепи свободных подгрупп. Говорят, что Л. с. г. имеет конечный ранг п, если всякое ее конечное… …   Математическая энциклопедия

  • ПОЛУГРУППА С УСЛОВИЕМ КОНЕЧНОСТИ — полугруппа, обладающая нек рым свойством q таким, что всякая конечная полугруппа обладает этим свойством (такое свойство q наз. условием конечности). В определении свойства q могут фигурировать элементы полугруппы, ее подполугруппы и т. п.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»