- периодическое уравнение
- мат. periodic equation
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ОБЫКНОВЕННОЕ — уравнение, в к ром неизвестной является функция от одного независимого переменного, причем в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков. Термин дифференциальные уравнения был предложен Г.… … Математическая энциклопедия
ЛИНЕЙНАЯ СИСТЕМА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПЕРИОДИЧЕСКИМИ КОЭФФИЦИЕНТАМИ — система плинейных дифференциальных уравнений вида где t действительная переменная, комплекснозначные функции, причем Число T>0 наз. периодом коэффициентов системы (1). Систему (1) удобно записывать в виде одного векторного уравнения где… … Математическая энциклопедия
Параметрический осциллятор — Параметрический осциллятор осциллятор, параметры которого могут изменяться в определённой области. Параметрический осциллятор принадлежит к классу незамкнутых колебательных систем, в которых внешнее воздействие сводится к изменению во… … Википедия
Цепь Маркова — Пример цепи с двумя состояниями Цепь Маркова последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, го … Википедия
Маркова цепь — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Марковские цепи — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Матрица переходных вероятностей — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Цепи Маркова — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Цепь (матем.) — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Гармонический осциллятор — У этого термина существуют и другие значения, см. Осциллятор. Гармонический осциллятор (в классической механике) система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x… … Википедия
МАТЕМАТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ — уравнения, описывающие математические модели физических явлений. М. ф. у. часть предмета математической физики. Многие явления физики и механики (гидро и газодинамики, упругости, электродинамики, оптики, теории переноса, физики плазмы, квантовой… … Математическая энциклопедия