- ЭЛЕКТРОННАЯ ТЕПЛОЁМКОСТЬ
- ЭЛЕКТРОННАЯ ТЕПЛОЁМКОСТЬ
-
- часть полной теплоёмкости твёрдого тела, обусловленная тепловым движением электронов. Э. т. диэлектриков и слаболегированных полупроводников, как правило, пренебрежимо мала. В вырожденных полупроводниках и металлах (в несверхпрово-дящем состоянии) при достаточно низких темп-pax Э. т. С, вносит заметный вклад в полную теплоёмкость С. Его можно оценить, рассматривая электроны (или дырки) как идеальный ферми-газ квазичастиц, характеризующихся нек-рой плотностью состояний2N(), где N()- плотность одночастичных состояний с определ. проекцией спина. Тепловое возбуждение испытывают лишь квазичастицы в интервале энергий ~kT вблизи уровня Ферми ; при kT<<. их число ~2N()kT, а их тепловая энергия ~2N()(kT)2, следовательно, C э~2N()k2T. Т. о., теплоёмкость вырожденного газа электронов или дырок подчиняется линейному закону и при достаточно низких Т может превзойти решёточную теплоёмкость С р=b Т3. Более детальный расчёт при тех же условиях приводит к ф-ле:
Соотношение (1) используют для определения значений N(). Для разделения электронного и решёточного вкладов в теплоёмкость данные о полной низкотемпературной теплоёмкости обычно аппроксимируют полиномом нечётных степеней по T:
Члены, содержащие T5 и более высокие степени Т, обусловлены отклонением свойств реального кристалла от описываемых Дебая теорией; если они малы в сравнении с предыдущими, то коэф. g и b можно найти соответственно по отсечке и наклону графич. зависимости С/Т от Т2, экстраполированной к T=0 К.
Ф-ла (1) неприменима в тех случаях, когда для участвующих в тепловом возбуждении электронов N() имеет выраженную структуру. Напр., если тепловое движение электрона представляет собой переходы между двумя уровнями, разделёнными энергетич. щелью Д, то Э. т. имеет т. н. а н о м а л и ю Ш о т т к и:
Здесь N -число одноэлектронных центров с двухуровневым спектром. Щель D в спектре электронных возбуждений появляется также при переходе металлов и вырожденных полупроводников в сверхпроводящее состояние; вследствие этого их Э. т. становится экспоненциально малой при kT<<D. В точке сверхпроводящего перехода ( Т= Т с )Э. т. имеет характерную для фазовых переходов II рода особенность, наблюдаемую в виде скачка dС. В приближении слабой связи d С1,43g Т с. Этот факт используют для идентификации перехода проводника в состояние объёмной сверхпроводимости; в случае поверхностной сверхпроводимости скачок Э. т. мал соответственно кол-ву сверхпроводящей фазы.
Лит.: Киттель Ч., Введение в физику твердого тела, пер. с англ., М., 1978. С. Н. Лыков.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.