ЦЕЛАЯ ФУНКЦИЯ

ЦЕЛАЯ ФУНКЦИЯ
ЦЕЛАЯ ФУНКЦИЯ

- функция, аналитическая во всей плоскости комплексного переменного (кроме, возможно, бесконечно удалённой точки). Она разлагается в степенной ряд

5086-1.jpg

сходящийся во всей плоскости 5086-2.jpg

Если f(r)5086-3.jpg0 всюду, то f(z) = eP(z), где P(z) - Ц. ф. Если имеется конечное число точек, в к-рых f(z) обращается в нуль, и эти точки- z1, z2, ...,zk (их наз. нулями функции), то

5086-4.jpg

где P(z )есть Ц. ф. В общем случае, когда f(z) имеет бесконечно много нулей z1, z2,..., справедливо представление

5086-5.jpg

где P(z )есть Ц. ф., а l = 0, если f(0)5086-6.jpg0, и l равно кратности нуля z = 0, если f(0)=0. Пусть

5086-7.jpg

Если при больших r величина М(r )растёт не быстрее rm, то f(z)-многочлен степени, не большей m. Следовательно, если f(z) не многoчлен, то М(r )растёт быстрее любой степени r. При оценке роста М (r )в этом случае в качестве ф-ции сравнения берётся показательная ф-ция.

По определению, f(z) есть Ц. <ф. к о н е ч н о г о п о р я д-к а, если имеется конечное m, такое, что

5086-8.jpg

Ниж. грань r множества чисел m, удовлетворяющих этому условию, наз. п о р я д к о м Ц. <ф. f(z). Порядок вычисляется по ф-ле

5086-9.jpg

Если f(z) порядка р удовлетворяет условию

5086-10.jpg

то говорят, что f(z) - ф-ция порядка r и к о н е ч н о г о т и п а. Ниж. грань s множества чисел a, удовлетворяющих данному условию, наз. типом Ц. ф. f(z). Он определяется из ф-лы

5086-11.jpg

Ф-ция многих переменных f(z1, z2,..., zn) есть Ц. <ф., если она является аналитической при |zk|<5086-12.jpg(k=1,2,..., п). Для неё вводятся понятия порядка и типа (сопряжённых порядков и типов). Простого представления в виде бесконечного произведения здесь получить не удаётся, потому что, в отличие от случая n=1, нули f(z) не являются изолированными.

Лит.: Левин Б. Я., Распределение корней целых функций, М., 1956; Евграфов М. А., Асимптотические оценки и целые функции, 3 изд., М., 1978; Ронкин Л. И., Введение в теорию целых функций многих переменных, М., 1971. А. Ф. Леонтьев.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "ЦЕЛАЯ ФУНКЦИЯ" в других словарях:

  • Целая функция — функция, голоморфная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного …   Википедия

  • ЦЕЛАЯ ФУНКЦИЯ — функция, аналитическая во всей плоскости комплексного переменного. Примерами целой функции служат многочлен a0 + a1z ... anzn, функции sin z, cos z …   Большой Энциклопедический словарь

  • целая функция — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN all zero function …   Справочник технического переводчика

  • целая функция — функция, аналитическая во всей плоскости комплексного переменного. Примерами целой функции служат многочлен a0 + a1z + ... + anzn, функции sinz , cos z, ez. * * * ЦЕЛАЯ ФУНКЦИЯ ЦЕЛАЯ ФУНКЦИЯ, функция, аналитическая во всей плоскости комплексного… …   Энциклопедический словарь

  • ЦЕЛАЯ ФУНКЦИЯ — функция, аналитическая но всей плоскости комплексного переменного (кроме, возможно, бесконечно удаленной точки). Она разлагается в степенной ряд сходящийся во всей плоскости Если всюду, то f(z)=eP(z), где Р(z) Ц …   Математическая энциклопедия

  • Целая функция —         функция, аналитическая во всей плоскости комплексного переменного (см. Аналитические функции). Примерами Ц. ф. могут служить алгебраический многочлен a0 + a1z +... + anzn, функции sinz, cosz, ez. Бесконечно удалённая точка является,… …   Большая советская энциклопедия

  • ЦЕЛАЯ ФУНКЦИЯ — функция, аналитическая во всей плоскости комплексного переменного. Примерами Ц. ф. служат многочлен а0 + a1z + ... +апzn, функции sin z, cos z, ez …   Естествознание. Энциклопедический словарь

  • Функция Миттаг-Леффлера — Функция Миттаг Леффлера  целая функция комплексного переменного , введённая Миттаг Леффлером в 1905 как обобщение показательной функции: , , Здесь обозначает Гамма функцию Эйлера …   Википедия

  • Функция Миттаг — Леффлера — Функция Миттаг Леффлера  целая функция Eρ(z) комплексного переменного z, введённая Миттаг Леффлером в 1905 как обобщение показательной функции: , , Здесь Γ обозначает Гамма функцию Эйлера. Литература Mittag Lef …   Википедия

  • ЦЕЛАЯ РАЦИОНАЛЬНАЯ ФУНКЦИЯ — (алгебраический) многочлен, (алгебраический) полином, функция вида где п целое неотрицательное, коэффициенты а 0, . . ., а п действительные или комплексные числа, z действительное или комплексное переменное. Если пназ. степенью многочлена,… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»