НАБЛЮДАЕМЫХ АЛГЕБРА

НАБЛЮДАЕМЫХ АЛГЕБРА
НАБЛЮДАЕМЫХ АЛГЕБРА

- множество наблюдаемых физ. системы, наделённое структурой алгебры над полем комплексных чисел. Наблюдаемой наз. любую физ. величину, значения к-рой можно найти экспериментально. T. к. всякий эксперимент осуществляется в ограниченной области пространства и в течение конечного промежутка времени, то каждая наблюдаемая локализована в нек-рой ограниченной области О пространства-времени M, т. е. её значения можно измерить посредством экспериментов в О. Две наблюдаемые одной системы наз. совместимыми (несовместимыми) между собой, если они допускают (не допускают) одновременное и независимое измерение. В классич. системах все наблюдаемые совместимы. Для релятивистских квантовых систем, в силу причинности принципа, любые две наблюдаемые совместимы, если они относятся к областям из M, разделённым пространственнопо-добным интервалом. Наблюдаемая, локализованная в ограниченной области M н подчинённая принципу причинности, наз. локальной наблюдаемой. T. о., для релятивистских квантовых систем все наблюдаемые локальны; однако на практике удобно причислять к наблюдаемым также глобальные, суммарные характеристики системы, типа полного заряда, полной энергии-импульса, и т. п., получаемые из локальных наблюдаемых при помощи к.-л. предельных операций. В этом смысле говорят о квазилокальных и глобальных наблюдаемых.

Наблюдаемые можно представлять с помощью разл. матем. объектов. Для квантовой теории, где состояния системы обычно представляют векторами гильбертова пространства 3047-93.jpg, стандартным является представление наблюдаемых операторами в гильбертовом пространстве, причём операторы, отвечающие совместимым наблюдаемым, коммутируют между собой. Операторы должны быть эрмитовыми, ибо измеряемые значения наблюдаемых вещественны, операторы могут быть ограниченными и неограниченными (в частности, наблюдаемым координат и импульсов, удовлетворяющим ка-нонич. перестановочным соотношениям, всегда отвечают неограниченные операторы). Однако, т. к. операторы наблюдаемых эрмитовы, неограниченным операторам можно сопоставить ограниченные спектральные проекции неограниченных. В этом случае множеству всех наблюдаемых квантовой системы отвечает множество А эрмитовых (ограниченных) операторов в 3047-94.jpg. Добавляя к А все произведения его элементов, получаем алгебру R, к-рая наз. H. а. квантовой системы (хотя не все её операторы отвечают наблюдаемым). Иногда вместо указанного добавления вводят новую операцию перемножения операторов: B.A = (AB + ВА)/2; по отношению к этой операции А - коммутативная алгебра, принадлежащая классу т. н. й оpдановых алгебр. В квантовой механике алгебра R обычно совпадает с алгеброй В(3047-95.jpg) всех ограниченных операторов в 3047-96.jpg.

Ясно, что с помощью H. а. можно описывать любые физ. системы, классические и квантовые, релятивистские и нерелятивистские. Наиб. плодотворным такой способ описания оказывается в квантовой теории, где успешно развивается алгебраич. подход в квантовой статистич. механике и алгебраический подход в квантовой теории поля. В последнем случае, чтобы учесть принцип причинности, нужно рассматривать множества наблюдаемых для каждой ограниченной (ибо наблюдаемые локализованы в ограниченных областях) области О из M. Описание релятивистской квантовой системы с помощью таких множеств существует в двух вариантах: конкретный подход, где A(O) - множество эрмитовых элементов алгебры фон Неймана R(O); абстрактный подход, где А (О) - множество эрмитовых элементов абстрактной С*-алгеб-ры 3047-97.jpg( О). Алгебры R(O3047-98.jpg (О) наз. алгебрами локальных наблюдаемых (локальным и алгебрами) области О; их совокупность для всех ограниченных областей О подчиняется системе аксиом (см. А ксио-матическая квантовая теория поля). Объединению локальных алгебр по всем О можно придать структуру С*-алгебры; эта алгебра наз. квазилокальной алгеброй, а её элементы - квазилокальными наблюдаемыми. Объединению алгебр R(O )по всем О можно придать также структуру алгебры фон Неймана; эта алгебра включает в себя квазилокальную и наз. глобальной алгеброй, а её элементы - глобальными наблюдаемыми. Состояния системы при этом обычно рассматривают как нормированные положит. функционалы на квазилокальной алгебре; представление состояния вектором в гильбертовом пространстве является частным случаем такой трактовки. Аналогично строится и алгебраич. подход в квантовой статистич. механике. Место множеств A(O )здесь занимают множества A(V) наблюдаемых, отвечающих конечным областям пространства или, в решёточных системах, конечным подмножествам ячеек решётки. Аналогом фундам. принципа локальности (причинности) в релятивистской теории здесь служит требование взаимной совместимости любых наблюдаемых, отвечающих непересекающимся областям.


Описание квантовополевой системы с помощью локальных алгебр первоначально использовалось для построения аксиоматич. теории. Затем оно стало применяться и для изучения конкретных моделей. Алгеб-раич. аппарат открывает здесь большие возможности: выбирая разл. состояния на квазилокальной алгебре, можно канонически строить описания системы, обладающие разл. желательными свойствами - наличием, отсутствием или вырождением вакуума, сохранением или нарушением тех или иных симметрии и т. п. В статис-тич. механике алгебраич. методы оказываются эффективными для описания и изучения равновесных состояний. С их помощью, напр., установлена эквивалентность разл. определений равновесного состояния, доказаны соотношения Онсагера для модели стационарной неравновесной термодинамики.

Лит.: Рюэль Д., Статистическая механика. Строгие результаты, пер. с англ., M., 1971; Эмх Ж., Алгебраические методы в статистической механике и квантовой теории поля, пер. с англ., M., 1976; Фаддеев Л. Д., Якубовский О. А., Лекции по квантовой механике, JI., 1980; X о-ружий С. С., Введение в алгебраическую квантовую теорию поля, M., 1986. С. С. Хоружий.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "НАБЛЮДАЕМЫХ АЛГЕБРА" в других словарях:

  • АЛГЕБРА ТОКОВ — в квантовой теории поля, соотношения, связывающий коммутатор двух токов с самими токами. А. т. выступает как проявление киральной симметрии и используется для нахождения связей между амплитудами разл. процессов в области низких энергий.… …   Физическая энциклопедия

  • Полная система коммутирующих наблюдаемых — (ПСКН)  множество перестановочных (коммутирующих) самосопряжённых операторов, описывающих квантовые наблюдаемые и определяющих обобщённый базис пространства чистых состояний квантовой системы. Это понятие впервые было предложено Дираком и… …   Википедия

  • СУПЕРОТБОРА ПРАВИЛА — ограничения на множество физ. наблюдаемых квантовой системы. Существование таких ограничений, указанное впервые в работе Дж. Вика (G. Wick), А. Вайтмана (A. Wightman) и Ю. Вигнера (Е. Wigner) (1952), означало коррекцию и обобщение обычных… …   Физическая энциклопедия

  • АЛГЕБРАИЧЕСКИЙ ПОДХОД — в квантовой теории поля направление, использующее аппарат теории алгебр для исследования квантовополевых систем, описываемых в естественных для квантовой механики терминах наблюдаемых и состояний. Эти два понятия возникли при выяснении алгебраич …   Физическая энциклопедия

  • Квантовая наблюдаемая — (наблюдаемая квантовой системы, иногда просто наблюдаемая) является линейным самосопряжённым оператором, действующим на сепарабельном (комплексном) гильбертовом пространстве чистых состояний квантовой системы. В интуитивном физическом понимании… …   Википедия

  • Психология — Сюда перенаправляется запрос «Психолог». На эту тему нужна отдельная статья …   Википедия

  • КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. — КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля ................. 3002. Свободные поля и корпускулярно волновой дуализм .................... 3013. Взаимодействие полей .........3024. Теория возмущений ............... 3035. Расходимости и… …   Физическая энциклопедия

  • ПОСЛЕДОВАТЕЛЬНЫЙ АНАЛИЗ — раздел математич. статистики, характерной чертой к рого является то, что число производимых наблюдений (момент остановки наблюдений) не фиксируется заранее, а выбирается по ходу наблюдений в зависимости от значений поступающих данных. Стимулом к… …   Математическая энциклопедия

  • КОНСТРУКТИВНАЯ КВАНТОВАЯ ТЕОРИЯ ПОЛЯ — раздел математической физики, изучающий свойства моделей квантовой теории поля (к. т. п.). Одна из задач К. к. т. п. состоит в исследовании квантовых полей в реальном 4 мерном пространстве времени. Однако само существование этих полей остается… …   Математическая энциклопедия

  • КВАНТОВАЯ МЕХАНИКА — фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую основу, на которой строится современная теория атомов, атомных… …   Энциклопедия Кольера


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»