- ЛОРЕНЦА СИСТЕМА
- ЛОРЕНЦА СИСТЕМА
-
- система трёх нелинейных дифференц. ур-ний первого порядка:
решения к-рой в широкой области параметров являются нерегулярными ф-циями времени и по мн. своим характеристикам неотличимы от случайных. Л. с. была получена Э. Лоренцем (Е. Lorenz) из ур-ний гидродинамики как модель для описания тепловой конвекции в горизонтальном слое жидкости, подогреваемой снизу ( Р r - Прандтля число,
- приведённое Р э -лея число, b- определяется выбором моды в Фурье-разложении поля скорости и темп-ры).
Рис. 1. Иллюстрация последовательных бифуркаций в системе Лоренца при увеличении параметра r: а)
; б)
; в)
г)
д)
е)
Л. с.- один из примеров динамической системы, имеющей простой физ. смысл; она демонстрирует стохастич. поведение системы. В фазовом пространстве этой системы в области параметров, указанных на рис. 1, существует странный аттрактор, движение изображающей точки на к-ром соответствует "случайному" - турбулентному течению жидкости при тепловой конвекции.
Рис. 2. Конвективная петля - физическая модель, для которой выводятся уравнения Лоренца.
Л. с. (при b=l) описывает, в частности, движение жидкости в конвективной петле, расположенной в вертикальной плоскости в однородном поле тяжести тороидальной полости, заполненной жидкостью (рис. 2). На стенках полости поддерживается не зависящая от времени (но зависящая от угла
) темп-pa Т(
); ниж. часть петли теплее верхней. Ур-ния движения жидкости в конвективной петле сводятся к Л. с., где x(t] - скорость движения жидкости, у (t) - темп-pa в точке N, a z(t) - темп-pa в точке М при больших t. С ростом г характер движения жидкости меняется: сначала (при г<1) жидкость неподвижна, далее (при
) устанавливается циркуляция с пост. скоростью (либо по часовой стрелке, либо против); при ещё больших r всё течение становится чувствительным к малым изменениям нач. условий, скорость циркуляции жидкости меняется уже нерегулярно: жидкость вращается иногда по часовой стрелке, иногда - против.
При обычно используемых значениях Pr=10, b=8/3 Л. с. обладает след. свойствами: ур-ния Л. с. инварианты относительно преобразования
,
фазовый объём сокращается с пост. скоростью
за единицу времени объём сокращается в
106 раз. С ростом г в Л. с. происходят след. осн. бифуркации. 1) При
единственным состоянием равновесия является устойчивый узел в начале координат О (О, О, 0). 2) При
, где r1=13,92, Л. с. кроме упомянутого тривиального ( О )имеет ещё два состояния равновесия
,
. Состояние равновесия О является седлом, имеющим двумерное устойчивое многообразие и одномерное неустойчивое, состоящее из О и двух сепаратрис
и
, стремящихся к
и
(рис. 1, а). 3) При r=r1 каждая из сепаратрис становится двоякоасимпто-тической к седлу О (рис. 1, б). При переходе r через r1 из замкнутых петель сепаратрис рождаются неустойчивые (седловые) периодич. движения - предельные циклы L1 и L2. Вместе с этими неустойчивыми циклами рождается и очень сложно организованное предельное множество; оно, однако, не является притягивающим (аттрактором), и при
(рис. 1, в), где r2=24,06, все траектории по-прежнему стремятся к
. Эта ситуация отличается от предшествующей тем, что теперь сепаратрисы
_ и
идут к "не своим" состояниям равновесия
и
соответственно. 4) При
, гдо
= 24,74, в Л. с. наряду с устойчивыми состояниями равновесия
существует ещё притягивающее множество, характеризующееся сложным поведением траекторий,- аттрактер Лоренца (рис. 1, д ирис. 3). 5) При
седловые циклы L1 и L2 стягиваются к состояниям равновесия
и
, к-рые при
теряют устойчивость, и при
единственным притягивающим мно-
жеством Л. с. является аттрактор Лоренца. Т. о., если стремить
к
со стороны меньших значений, то стохастичность в Л. с. возникает сразу, скачком, т. е. имеет место жёсткое возникновение стохастичности.
Рис. 3. Траектория, воспроизводящая аттрактор Лоренца (выходит из начала координат); горизонтальная плоскость соответствует r = = 27, r=28.
К Л. с. сводятся не только ур-ния, описывающие конвективные движения жидкости, но и др. физ. модели (трёхуровневый лазер, дисковое динамо и т. д.).
Лит.: Lorenz E., Deterministic nonperiodic flow, "J. Atmos. Sci.", 1963, v. 20, p. 130; в рус. пер., в кн.: Странные аттракторы, М., 1981, с. 88; Гапонов - Грехов А. В., Рабинович М. И., Хаотическая динамика простых систем, "Природа", 1981, № 2, с. 54; Афраймович В. С., Быков В. В., Шильников Л. П., О притягивающих негрубых предельных множествах типа аттрактора Лоренца, "Тр. Московского матем. общества", 1982, т. 44, с. 150; Рабинович М. И., Трубецков Д. И., Введение в теорию колебаний и волн, М., 1984. В. Г. Шехов.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.