- МИКРОКАНОНИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ГИББСА
- МИКРОКАНОНИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ГИББСА
-
равновесное распределение вероятностей состояний статистического ансамбля систем с заданной полной энергией при пост. объёме и пост. числе ч-ц, но энергетически изолированных от окружающей среды, т. е. статистич. распределение для микроканонического ансамбля Гиббса. Установлено амер. физиком Дж. У. Гиббсом (1901) как один из осн. законов статистической физики.В классич. статистике статистич. ансамбль характеризуется ф-цией распределения f(р, q), зависящей от обобщённых координат q и импульсов р всех ч-ц системы. Эта ф-ция определяет плотность вероятности микроскопич. состояния (р, q) системы. Равновесное распределение должно зависеть от интегралов движения системы, её полной энергии H(р, q). Согласно М. р. Г., все микроскопич. состояния на поверхности заданной энергии Н(р, q) (т. е. заданной Гамильтона функции) равновероятны, а вероятности других состояний равны нулю (системы энергетически изолированы), следовательноf(р, q)=Аd(Н(р, q)-?),где d — дельта-функция Дирака, ? — заданное значение энергии.Постоянная А определяется из условия нормировки: суммарная вероятность пребывания системы во всех состояниях равна единице.В квант. статистике рассматривается ансамбль энергетически изолированных квант. систем с пост. объёмом V и числом ч-ц N, имеющих одинаковую энергию ? с точностью до D?<-?. Величину D? выбирают обычно малой, но конечной, т. к. точная фиксация энергии в квант. механике, в соответствии с неопределённостей соотношением между энергией и временем, потребовала бы бесконечного времени наблюдения. Предполагается, что для таких систем все квантовомеханич. состояния с энергией от ? до ?+D? равновероятны. Такое распределение вероятностей w состояний системы, когда w (?к) =РАСПРЕДЕЛЕНИЕ ГИББСА">наз. М. р. Г. для квантового статистического ансамбля. Здесь W(?, N, V) — статистический вес, равный числу квант. состояний в слое D? и определяемый из условия нормировки Sкw(?к)=1. М. р. Г. малочувствительно к выбору ширины энергетич. слоя D?, поэтому в квант. статистике можно также рассматривать ансамбль полностью изолированных систем, когда D?®0. Такому М. р. Г. соответствует матрица плотности r=Ad(H-?), где Н — гамильтониан, системы.М. р. Г. неудобно для практич. применений, т. к. для вычисления W нужно найти распределение квант, уровней системы из большого числа ч-ц, что представляет очень сложную задачу. М. р. Г. применяется при теор. исследованиях, т. к, из всех Гиббса распределений оно наиболее тесно связано с механикой. Для конкретных задач удобнее рассматривать не энергетически изолированные системы, а системы, находящиеся в тепловом контакте с окружающей средой, темп-pa к-рой постоянна (с термостатом), и применять каноническое распределение Гиббса или рассматривать системы, для к-рых возможен обмен энергией и ч-цами с термостатом, и использовать Гиббса большое каноническое распределение.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- МИКРОКАНОНИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ГИББСА
-
- равновесное распределение вероятностей для статистич. ансамбля систем с заданной полной энергией при пост, объёме V и пост, полном числе частиц N, соответствует микроканоническому ансамблю Ги6бса. Установлено Дж. У. Гиббсом (J. W. Gibbs) в 1901 для случая классич. статистики как один из осн. законов статистической физики.
В классич. статистич. механике ф-ция распределения /(р, q )зависит от координат и импульсов р, q всех частиц через Гамильтона функцию H (р, q), к-рая является интегралом движения системы. Согласно M. р. Г., все микроскопич. состояния в узком слое энергии равновероятны, а вероятности др. состояний равны нулю, т. е.
- статистич. вес, определяемый из условия нормировки (суммарная вероятность пребывания системы во всех состояниях равна 1). Следовательно,
эта величина слабо зависит от ширины слоя при больших N этой зависимостью можно пренебречь. В случае классич. механики можно перейти к пределу и записать M. р. Г. в виде
- дельта-функция Дирака. Статистич. вес связан с энтропией соотношением
В квантовой статистич. механике рассматривают ансамбль замкнутых, энергетически изолиров. систем с объёмом V и числом частиц N, имеющих одинаковую энергию с точностью до Величину выбирают малой, но конечной, т. к. точная фиксация энергии в квантовой механике, в соответствии с неопределённостей соотношением между энергией и временем, потребовала бы бесконечного времени наблюдения. Предполагается, что для таких систем все квантовомеханич. состояния с энергией равновероятны, а вне этого слоя их вероятность равна нулю. Такое распределение вероятности w состояний системы:
наз. M. р. Г. для квантового статистич. ансамбля. Здесь - статистич. вес, равный числу квантовых состояний в слое при фиксиров. он определяется из условия нормировки вероятности
В квантовом случае также можно устремить к нулю, такому M. р. Г. соответствует статистический оператор (матрица плотности) где - гамильтониан системы.
M. р. Г. неудобно для практич. применений, т. к. для вычисления W нужно найти плотность распределения квантовых уровней для системы из большого числа частиц, что представляет собой сложную задачу. M. р. Г. важно для теоретич. исследований, т. к. из всех Гиббса распределений оно наиб, тесно связано с механикой. С помощью M. р. Г. доказывается теорема Гиббса о том, что малая подсистема большой системы, распределённой по M. р. Г., соответствует каноническому распределению Гиббса. Для конкретных задач удобнее рассматривать системы, находящиеся в тепловом контакте с окружающей средой, темп-pa к-рой постоянна (с термостатом), и применять канонич. распределение Гиббса или рассматривать системы, для к-рых возможен обмен энергией и частицами с термостатом, и использовать большое каноническое распределение Гиббса.
Лит. см. при ст. Статистическая физика. Д. H. Зубарев.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.