- СУСЛИНА КРИТЕРИЙ
- см. Суслина теорема.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
- см. Суслина теорема.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
БОРЕЛЕВСКИХ МНОЖЕСТВ КРИТЕРИЙ — необ ходимое и достаточное условие того, чтобы А множество в полном сепарабельном метрич. пространстве было бо релевским, заключается в том, что: 1) его дополнение также является А множеством (критерий Суслина), 2) оно представляется в виде… … Математическая энциклопедия
ДЕСКРИПТИВНАЯ ТЕОРИЯ МНОЖЕСТВ — раздел теории множеств, изучающий внутреннее строение множеств в зависимости ют тех операций, при помощи к рых эти множества могут быть построены из множеств сравнительно простой природы (напр., замкнутых или открытых подмножеств данного… … Математическая энциклопедия
МОЩНОСТНАЯ ХАРАКТЕРИСТИКА — топологического пространства функция, сопоставляющая этому пространству бесконечное кардинальное число и принимающая одинаковые значения на гомеоморфных пространствах. М. х. наз. также кардинальными инвариантами. Областью определения М. х. может… … Математическая энциклопедия
МЕТРИЧЕСКОЕ ПРОСТРАНСТВО — множество Xвместе с нек рой метрикойr на ном. Теоретико множественный подход к изучению фигур (пространств) основан на исследовании взаимного расположения составляющих их элементарных частей. Одной из фундаментальных характеристик взаимного… … Математическая энциклопедия
МЕТРИЗУЕМОЕ ПРОСТРАНСТВО — пространство, топология к рого порождается иек рой метрикой по правилу: точка принадлежит замыканию множества в том и только в том случае, если она лежит на нулевом расстоянии от этого множества. Если такая метрика существует, то она не… … Математическая энциклопедия
Метризуемое пространство — Метризуемое пространство топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой. Если такая метрика существует, то она не… … Википедия
Метризируемое — Метризуемое пространство топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой. Если такая метрика существует, то она не единственна за… … Википедия