СТОКСА ФОРМУЛА

СТОКСА ФОРМУЛА

- 1) формула, выражающая связь между потоком векторного поля через двумерное ориентированное многообразие и циркуляцию этого поля по соответствующим образом ориентированному краю этого многообразия. Пусть S - ориентированная кусочно гладкая поверхность, - единичная нормаль к поверхности S(в тех точках, конечно, где она существует), задающая ориентацию S, и пусть край поверхности Sсостоит из конечного числа кусочно гладких контуров. Через обозначен край поверхности S, ориентированный с помощью единичного касательного к нему вектора так, чтобы получающаяся ориентация края была согласована с ориентацией v поверхности S.
Если а= ( Р, Q, R)- непрерывно дифференцируемое в окрестности поверхности Sвекторное поле, то

(dS - элемент площади поверхности S, ds - дифференциал длины дуги края поверхности S)или, в координатном виде:

Предложена Дж. Стоксом (G. Stokes, 1854). 2)С. ф. наз. также обобщение формулы (*), представляющее собой равенство интеграла от внешнего дифференциала дифференциальной формы по ориентированному компактному многообразию Ми интеграла от самой формы по ориентированному согласованно с ориентацией многообразия Мкраю многообразия М:

Частными случаями этой формулы являются Ньютона - Лейбница формула, Грина формула, Остроградского формула.
Л. Д. Кудрявцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "СТОКСА ФОРМУЛА" в других словарях:

  • Стокса формула — сопротивления сферы формула, определяющая силу сопротивления X сферы диаметра d, движущейся в покоящейся вязкой несжимаемой жидкости с постоянной скоростью V( ) при малых Рейнольдса числах Re < < l: X = 3((()dV((), или в безразмерном виде (см.… …   Энциклопедия техники

  • СТОКСА ФОРМУЛА — формула, связывающая криволинейный интеграл по замкнутому контуру с поверхностным интегралом по поверхности, ограниченной этим контуром. Предложена Дж. Г. Стоксом в 1854 …   Большой Энциклопедический словарь

  • Стокса формула — формула, связывающая криволинейный интеграл по замкнутому контуру с поверхностным интегралом по поверхности, ограниченной этим контуром. Предложена Дж. Г. Стоксом в 1854. * * * СТОКСА ФОРМУЛА СТОКСА ФОРМУЛА, формула, связывающая криволинейный… …   Энциклопедический словарь

  • Стокса формула —         формула преобразования криволинейного интеграла по замкнутому контуру L в поверхностный интеграл по поверхности Σ, ограниченной контуром L. С. ф. имеет вид:                  ,          причём направление обхода контура L должно быть… …   Большая советская энциклопедия

  • Стокса формула — Зависимость cx сферы от Re. Стокса формула сопротивления сферы — формула, определяющая силу сопротивления X сферы диаметра d, движущейся в покоящейся вязкой несжимаемой жидкости с постоянной скоростью V∞ при малых Рейнольдса числах Re  l: X  …   Энциклопедия «Авиация»

  • Стокса формула — Зависимость cx сферы от Re. Стокса формула сопротивления сферы — формула, определяющая силу сопротивления X сферы диаметра d, движущейся в покоящейся вязкой несжимаемой жидкости с постоянной скоростью V∞ при малых Рейнольдса числах Re  l: X  …   Энциклопедия «Авиация»

  • Стокса формула — …   Википедия

  • СТОКСА ТЕОРЕМА — обобщение Стокса формулы, утверждениео равенстве интеграла от внеш. дифференциала dw дифференциальной формы поориентированному компактному многообразию М интегралу от самой формыпо ориентированному (согласованно с ориентацией многообразия М )краю …   Физическая энциклопедия

  • ФОРМУЛА СТОКСА — формула скорости оседания частицы в жидкости: где v скорость оседания, g ускорение силы тяжести, r радиус частицы, ρ плотность вещества частицы, ρ плотность жидкости, μ коэф. вязкости жидкости. Коэф. К зависит от формы частицы и… …   Геологическая энциклопедия

  • Формула Грина — Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру C и двойным интегралом по области D, ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»