СИЛЬНО НЕПРЕРЫВНАЯ ПОЛУГРУППА

СИЛЬНО НЕПРЕРЫВНАЯ ПОЛУГРУППА

семейство линейных ограниченных операторов T(t), t>0, в банаховом пространстве X, обладающее свойствами:

1)

2) функции Т(t)xнепрерывны на

при любом

При выполнении 1) из измеримости всех функций , и, в частности, из односторонней (справа или слева) слабой непрерывности следует сильная непрерывность T(t). Для С. н. п. конечное число


наз. т и п о м п о л у г р у п п ы. Таким образом, нормы всех функций Т(t)xрастут на не быстрее экспоненты . Классификация С. н. п. основана на их поведении при . Если существует такой ограниченный оператор J, что при то J - проекционный оператор и , где А - ограниченный линейный оператор, коммутирующий с J. В этом случае Т(t)непрерывна по норме операторов. Если J=J, то ,- равномерно непрерывная группа операторов.

Если при каждом , то J- также проекционный оператор, проектирующий Xна подпространство Х 0 - замыкание объединения всех значений .

Для того чтобы J существовал и равнялся J, необходимо и достаточно, чтобы была ограничена на (0,1) и чтобы Х 0=Х. В этом случае полугруппа T(t),доопределенная равенством T(0)=I, сильно непрерывна при (удовлетворяет С 0 -у с л о в и ю). Для более широких классов полугрупп предельное соотношение выполняется в обобщенном смысле:


(суммируемость по Чезаро, С 1 -у с л о в и е), или


(суммируемость по Абелю, А-условие). При этом предполагается, что функции , интегрируемы на [0,1] (а значит, и на любом конечном отрезке).

Поведение С. н. п. при может быть совсем нерегулярным. Напр., функции могут иметь при t=0степенную особенность.

Для плотного в Х 0 множества элементов хфункции Т(t)xдифференцируемы на . Важную роль играют С. н. п., для к-рых функции Т(t)xдифференцируемы при всех хдля t>0. В этом случае оператор Т'(t)ограничен при каждом tи его поведение при дает новые возможности для классификации полугрупп. Выделены классы С. н. п., для к-рых Т(t)допускает голоморфное продолжение в сектор комплексной плоскости, содержащий полуось .

См. Полугруппа операторов, Производящий оператор полугруппы.

Лит.:[1] X и л л е Э., Ф и л л и п с Р., Функциональный анализ и полугруппы, пер. с англ., М., 1962. С. Г. Крейн.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "СИЛЬНО НЕПРЕРЫВНАЯ ПОЛУГРУППА" в других словарях:

  • Полугруппа операторов — однопараметрическое семейство линейных ограниченных операторов в банаховом пространстве. Теория полугрупп операторов возникла в середине 20 го века в работах таких известных математиков, как Э.Хилле, Р.Филиппса, К.Иосиды, В.Феллера. Основные… …   Википедия

  • ПОЛУГРУППА ОПЕРАТОРОВ — семейство операторов {Т} вбанаховом или топологическом векторном пространстве, обладающее тем свойством, что композиция любых двух операторов семейства снова принадлежит семейству. Если операторы Т занумерованы элементами нек рой абстрактной… …   Математическая энциклопедия

  • СЖАТИЙ ПОЛУГРУППА — однопараметрически сильно непрерывная полугруппа T(t), , Т(0)=I, линейных операторов в банаховом пространстве E, для к рых . Плотно определенный в Еоператор Абудет производящим оператором (г е н е р а т о р о м) С. п. тогда и только тогда, когда… …   Математическая энциклопедия

  • ЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В БАНАХОВОМ ПРОСТРАНСТВЕ — уравнение вида где A0(t), A1(t).при каждом t линейные операторы в банаховом пространстве Е, g(t) заданная, a u(t) искомая функции со значениями в Е;производная ипонимается как предел по норме Еразностного отношения. 1. Линейное дифференциальное… …   Математическая энциклопедия

  • ПРОИЗВОДЯЩИЙ ОПЕРАТОР — полугруппы производная в нуле от полугруппы линейных ограниченных операторов , действующих в комплексном банаховом пространстве X. Если T(t).непрерывна по норме операторов, то она имеет вид T(t)= е tA0, где А 0 ограниченный оператор, (1) при… …   Математическая энциклопедия

  • КАЧЕСТВЕННАЯ ТЕОРИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ — в банаховом пространстве раздел функционального анализа, в к ром исследуется поведение на действительной оси J или на положительной (отрицательной) полуоси J+ (J ) решений эволюционных уравнений в банаховом пространстве. Рассматриваются уравнения …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»