РУНГЕ ОБЛАСТЬ

РУНГЕ ОБЛАСТЬ

область Рунге первого рода,- область G в пространстве комплексных переменных (z1, . . ., zn), обладающая тем свойством, что для любой голоморфной в Gфункции f(z1 . . ., zn) существует последовательность многочленов

(*)

сходящаяся в G к f(zl . . ., zn) равномерно на каждом замкнутом ограниченном множестве . Определение P.о. в т о р о г о р о д а получается отсюда заменой .последовательности (*) последовательностью рациональных функций . При n=1 всякая односвязная область является Р. о. первого рода, всякая область - Р. о. второго рода (см. Рунге теорема). При не всякая односвязная область есть Р. о. и не всякая Р. о. односвязна.

Лит.: [1] Ф у к с Б. А., Специальные главы теории аналитических функций многих комплексных переменных, М., 1963; [2] В л а д и м и р о в В. С., Методы теории функций многих комплексных переменных, М., 1964. Е. <П. Долженко..


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "РУНГЕ ОБЛАСТЬ" в других словарях:

  • РУНГЕ ТЕОРЕМА — теорема о возможности полиномиальных приближений голоморфных функций, впервые доказанная К. Рунге (С. Runge, 1885). Пусть D односвязная область на плоскости комплексного переменного z. Тогда всякая функция f, голоморфная в D, приближается… …   Математическая энциклопедия

  • Численное интегрирование — (историческое название: (численная) квадратура) вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов отыскания значения определённого интеграла. Численное… …   Википедия

  • ЖЕСТКАЯ ДИФФЕРЕНЦИАЛЬНАЯ СИСТЕМА — система обыкновенных дифференциальных уравнений, при численном решении к рой явными методами типа Рунге Кутта или Адамса, несмотря на медленное изменение искомых переменных, шаг интегрирования обязан оставаться малым. Попытки уменьшить время… …   Математическая энциклопедия

  • Квадратурные формулы — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура)  вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… …   Википедия

  • Квадратурная формула — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура)  вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… …   Википедия

  • Прямоугольников формула — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура)  вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… …   Википедия

  • Формула прямоугольников — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура)  вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… …   Википедия

  • Формула трапеций — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура)  вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… …   Википедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ОБЫКНОВЕННОЕ — приближенные методы решения методы получения аналитич. выражений (формул), либо численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения (д. у.) или системы для одного или нескольких… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО — раздел комплексного анализа, изучающий вопросы приближенного представления (аппроксимации) функций комплексного переменного посредством аналитич. ций специальных классов. Основными в теории П. ф. к. п. являются задачи о возможности приближения,… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»