РЕГУЛЯРНОЕ КОЛЬЦО

РЕГУЛЯРНОЕ КОЛЬЦО

в к о м м у т а т и в н о й а л г е б р е - нётерово кольцо А, все локализации к-рого регулярны; здесь - простой идеал в А. При этом локальное нётерово кольцо Ас максимальным идеалом наз. р е г у л я р н ы м, если порождается пэлементами, где n=dim A, т. е. если касательное пространство (как векторное пространство над полем вычетов) имеет размерность, равную dim А. Это равносильно отсутствию особенностей у схемы Spec A. Локальное Р. к. Авсегда целостно и нормально, а также факториально (т е о р е м а А у с л е н д е р а - Б у к с б а у м а), глубина его равна dim А. Ассоциированное градуированное кольцо


изоморфно кольцу многочленов . Локальное нётерово кольцо Арегулярно тогда и только тогда, когда регулярно его пополнение ; вообще, если АМ В - плоское расширение локальных колец и Врегулярно, то и Арегулярно. Для полных локальных Р. к. имеет место с т р у к т у р н а я т е о р е м а К о э н а: они имеют вид , где R - поле или кольцо дискретного нормирования. Любой модуль конечного типа над локальным Р. к. обладает конечной свободной резольвентой (см. Гильберта теорема о сизигиях); верно и обратное (см. [2]).

Р. к. являются любое полей любое дедекиндово кольцо. Если Арегулярно, то регулярно кольцо многочленов A[X1, . . ., Х n]и кольцо формальных степенных рядов над А. Если - необратимый элемент локального Р. к., то А/ аА регулярно тогда и только тогда, когда

Лит.:[1] З а р и с с к и й О., С а м ю э л ь П., Коммутативная алгебра, пер. с англ., т. 2, М., 1963; [2] С е р р Ж.- П., "Математика", 1963, т. 7, № 5, с. 3-93; [3] G r o t h e n d i е с k A., D i e u d o n n e J. (red.), Elements de geometrie algebrique, chap. 4, P., 1964. В. И. Данилов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "РЕГУЛЯРНОЕ КОЛЬЦО" в других словарях:

  • РЕГУЛЯРНОЕ КОЛЬЦО — (в смысле Неймана) ассоциативное кольцо (обычно с единицей), в к ром уравнение разрешимо для любого а. Следующие свойства ассоциативного кольца R с единицей равносильны: а) R есть Р. к.; б) каждый главный левый идеал кольца R порождается… …   Математическая энциклопедия

  • САМОИНЪЕКТИВНОЕ КОЛЬЦО — л е в о е кольцо, инъективное как левый модуль над собой. Симметричным образом определяется п р а в о е С. к. Классически полупростые кольца и все кольца вычетов суть С. к. Если R С. к. с радикалом Джекобсона J, то факторкольцо R/J регулярно в… …   Математическая энциклопедия

  • РИККАРТОВО КОЛЬЦО — левое, л е в о е РР кольцо, кольцо, в к ром левый аннулятор любого элемента порождается идемпотентом (симметричным образом определяются п р а в ы е Р. к.). Р. к. характеризуются проективностью всех главных левых (правых) идеалов. Риккартовыми… …   Математическая энциклопедия

  • Малое кольцо Московской железной дороги — (МК МЖД) (Московская окружная железная дорога (МОЖД), Малое московское кольцо (ММК))  окружная железная дорога в Москве, предназначенная для осуществления грузовых перевозок между всеми 10 магистральными железнодорожными направлениями… …   Википедия

  • КОЭНА - МАКОЛЕЯ КОЛЬЦО — маколеево к о л ь ц о, коммутативное локальное нётерово кольцо А, глубина prof Aк poro равна его размерности dim А. Гомологич. характеризация К. М. к. Асостоит в том, что группы или группы локальных когомологий обращаются в нуль при всех здесь m… …   Математическая энциклопедия

  • ГЕНЗЕЛЕВО КОЛЬЦО — коммутативное локальное кольцо, для к рого выполняется Гензеля лемма, или, в другом определении, для к рого выполняется теорема о неявной функции. Для локального кольца А с максимальным идеалом последнее означает, что для любого унитарного… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ K-ТЕОРИЯ — раздел алгебры, к рый в основном занимается изучением К функторов по существу это часть общей линейной алгебры. Она имеет дело со структурной теорией проективных модулей и их групп автоморфизмов. Упрощенно, это обобщение результатов о… …   Математическая энциклопедия

  • АССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — кольца и алгебры с ассоциативным умножением, т. е. множества с двумя бинарными операциями сложением + и умножением Х, являющиеся абелевой группой по сложению и полугруппой по умножению, причем умножение дистрибутивно (слева и справа) относительно …   Математическая энциклопедия

  • ГИЛЬБЕРТА ТЕОРИЯ — 1) Г. т. о базисе: если А коммутативное нётерово кольцо и кольцо многочленов от с коэффициентами в А, то и нётерово кольцо. В частности, в кольце многочленов от конечного числа переменных над полем или над кольцом целых чисел любой идеал… …   Математическая энциклопедия

  • КЛАССОВ ДИВИЗОРОВ ГРУППА — факторгруппа группы диеизориалъных идеалов D (А) Крулля кольца А по подгруппе главных идеалов F(A). К. д. г. является абелевой группой и обычно обозначается С(А). Группа С(А)порождается классами простых идеалов высоты 1 в кольце А. В некотором… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»