ПОЛУСОВЕРШЕННОЕ КОЛЬЦО

ПОЛУСОВЕРШЕННОЕ КОЛЬЦО

- кольцо, каждый конечно порожденный левый (или каждый конечно порожденный правый) модуль над к-рым обладает проективным накрытием. Кольцо Rс радикалом Джекобсона J оказывается П. к. тогда и только тогда, когда Rполулокально и у каждого идемпотента факторкольца R/J имеется идемпотентный прообраз в R. Первое условие можно заменить требованием классич. полупростоты факторкольца R/J, а второе - возможностью "поднимать" из R/J в Rмодульные прямые разложения. П. к. характеризуются также условием, что каждый модуль допускает прямое разложение, относительно к-рого дополняемы максимальные прямые слагаемые. Кольцо матриц над П. к. является П. к.

См. также Совершенное кольцо и лит. при этой статье.

Л. А. Скорняков.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "ПОЛУСОВЕРШЕННОЕ КОЛЬЦО" в других словарях:

  • ГОМОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ КОЛЕЦ — общее название для результатов, описывающих свойства кольца (обычно, ассоциативного и с единицей) по свойствам тех или иных модулей над ним и, в частности, по свойствам категории всех левых (или правых) модулей над этим кольцом (см. Мориты… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»