ПОЛУПРЯМОЕ ПРОИЗВЕДЕНИЕ

ПОЛУПРЯМОЕ ПРОИЗВЕДЕНИЕ

группы Ана группу В - группа G=AB, являющаяся произведением своих подгрупп А и В, причем Внормальца в G, и ={1}. Если также и Анормальна в G, то П. п. превращается в прямое произведение. П. п. по группам Аи В строится неоднозначно. Для построения П. п. нужно еще знать, какие автоморфизмы на группе Ввызывают сопряжения элементами из А . Точнее, если G=AB - П. п., то каждому элементу соответствует автоморфизм , являющийся сопряжением элементом а:


При этом соответствие есть гомоморфизм А Aut В. Обратно, если Аи В - произвольные группы, то для любого гомоморфизма существует единственное П. п. группы Ана группу Втакое, что aa=j(а) для любого . П. п. является частным случаем расширения группы Вс помощью группы А, такое расширение наз. расщепляющимся.

Лит.:[1] Курош А. Г., Теория групп, 3 изд., М., 19(57.

А. Л. Шмелькин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "ПОЛУПРЯМОЕ ПРОИЗВЕДЕНИЕ" в других словарях:

  • Полупрямое произведение — Полупрямое произведение  конструкция в теории групп, позволяющая строить новую группу по двум группам и , и действию группы на группе автоморфизмами. Полупрямое произведение групп и над …   Википедия

  • Прямое произведение — Прямое или декартово произведение  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих… …   Википедия

  • Декартово произведение — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Декартово произведение групп — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Декартово произведение множеств — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Прямое произведение графов — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Прямое произведение групп — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Прямое произведение множеств — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • КОРНЕВАЯ СИСТЕМА — конечное множество Л векторов векторного пространства Vнад полем R, обладающее следующими свойствами: 1) Rне содержит нулевого вектора и порождает V;2) для каждого существует такой элемент а* сопряженного к F пространства V*, что и что… …   Математическая энциклопедия

  • Декартова степень — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»