НЭША ТЕОРЕМЫ

НЭША ТЕОРЕМЫ

в дифференциальной геометрии - две группы теорем об изометрич. вложениях и погружениях римановых многообразий в евклидовы пространства, и первоначальные варианты к-рых принадлежат Дж. Нэшу (J. Nash).

1) Н. т. о -вложениях и -погружениях. Погружение класса (вложение) n-мерного риманова пространства класса с метрикой в m-мерное евклидово пространство наз. коротким, если индуцированная им на метрика такова, что квадратичная форма положительно определена. Тогда если допускает короткое погружение (вложение) в то допускает и изометрич. погружение (вложение) класса в . Эта теорема при ограничении доказана в [1], а в приведенной формулировке доказана в [2]. Из этой теоремы вытекает, в частности, что если компактное риманово многообразие имеет вложение (погружение) в допускает и изометрич. -вложение (погружение) в Другим следствием Н. т. является наличие у каждой точки достаточно малой окрестности, допускающей изометрич. вложение класса в

2) Н. т. о регулярных вложениях. Всякое компактное риманово многообразие класса допускает изометрич. вложение в , где . Если некомпактно, то оно допускает. <изометрич. вложение в , где

Н. т. о регулярных вложениях получена в результате применения теоремы об обращении широкого класса дифференциальных операторов - Н. т. о неявной функции. Смысл этой теоремы состоит в том, что из разрешимости нек-рой линейной алгебраич. системы уравнений, естественно связанной с дифференциальным оператором L, и при введении разумной топологии в образе и прообразе рассматриваемый оператор является открытым отображением, т. е. оператор Lлокально обратим вблизи любой точки из множества его значений. Для уравнений вложения риманова пространства в евклидово эти условия сводятся к тому, что первые и вторые производные отображения по внутренним координатам должны быть линейно независимыми. Такие вложения были впервые рассмотрены в [4]; они наз. свободными вложениями. Из Н. т. о неявной функции вытекает, что компактное риманово многообразие , достаточно близкое к компактному риманову многообразию , допускающему свободное вложение в , также допускает свободное вложение в . Этот факт и своеобразный метод продолжения по параметру привели к Н. т. о регулярных вложениях (см. [3]). С помощью распространения методов Нэша на некомпактные многообразия и аналитич. вложения, а также с помощью кардинального усовершенствования процесса продолжения по параметру доказано, что всякое бесконечно дифференцируемое (аналитическое) риманово многообразие допускает изометрическое дифференцируемое (аналитическое) вложение в , где

Лит.:[1] Наш Д ж., "Математика", 1957, т. 1, № 2, с. 3-16; [2] Кёйпер Н., там же, т. 1, №2, с. 17-28; [3] Нэш Дж., "Успехи матем. наук", 1971, т. 26, в. 4, с. 173- 216; [4] Бурстин К., "Матем. сб.", 1931, т. 38, № 3-4, с. 74-85.

Д. Д. Соколов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "НЭША ТЕОРЕМЫ" в других словарях:

  • НЭША ТЕОРЕМА — в теории игр теорема о существовании ситуаций равновесия в смешанном расширении конечной бескоалиционной игры где конечные множества соответственно игроков и их стратегий, функция выигрыша игрока (см. также Игр теория). Установлена Дж. Нэшем (J.… …   Математическая энциклопедия

  • Теорема Нэша о регулярных вложениях — У этого термина существуют и другие значения, см. Теорема Нэша. Теорема Нэша о регулярных вложениях: Всякое мерное риманово многообразие класса , , допускает изометрическое вложение в …   Википедия

  • НЕАТОМИЧЕСКАЯ ИГРА — игра, в к рой на множестве всех игроков I задана s алгебра подмножеств и на существует такая неатомическая мера, что множества игроков , имеющие нулевую меру, не оказывают влияния на исход игры. Н. и. служат моделями ситуаций, в к рых имеются… …   Математическая энциклопедия

  • ИЗОМЕТРИЧЕСКОЕ ПОГРУЖЕНИЕ — погружение k мерного метрич. многообразия М к в n мерное риманово пространство V, в виде k мерной поверхности Ф, при к ром расстояние между любыми двумя точками на М k совпадает с расстоянием между их образами, измеренным по поверхности Ф в… …   Математическая энциклопедия

  • Эффективность по Парето — Оптимальность по Парето  такое состояние системы, при котором значение каждого частного показателя, характеризующего систему, не может быть улучшено без ухудшения других. Таким образом, по словам самого Парето : «Всякое изменение,… …   Википедия

  • Оптимальность по Парето — такое состояние системы, при котором значение каждого частного критерия, описывающего состояние системы, не может быть улучшено без ухудшения положения других элементов. Принцип, по словам самого Парето гласит так: «Всякое изменение, которое не… …   Википедия

  • Оптимум по Парето — Оптимальность по Парето такое состояние системы, при котором значение каждого частного критерия, описывающего состояние системы, не может быть улучшено без ухудшения положения других элементов. Принцип, по словам самого Парето гласит так: «Всякое …   Википедия

  • Парето-оптимум — Оптимальность по Парето такое состояние системы, при котором значение каждого частного критерия, описывающего состояние системы, не может быть улучшено без ухудшения положения других элементов. Принцип, по словам самого Парето гласит так: «Всякое …   Википедия

  • БЕРТРАНА ПРИЗНАК — сходимости числовых рядов с положительными членами: если и существует предел (конечный лли бесконечный) то при ряд сходится, а при расходится. Установлен Ж. Бертраном (J. Bertrand). Лит.:[1] Фихтенгольц Г. М., Курс дифференциального и… …   Математическая энциклопедия

  • МАТЕМАТИЧЕСКАЯ ЭКОНОМИКА — математическая дисциплина, предметом к рой являются модели экономич. объектов и процессов и методы их исследования. Однако понятия, результаты, методы М. э. удобно и принято излагать в тесной связи с их экономич. происхождением, интерпретацией и… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»