ЛОРЕНЦА ПРЕОБРАЗОВАНИЕ

ЛОРЕНЦА ПРЕОБРАЗОВАНИЕ

преобразование координат, связывающее две галилеевы системы координат в каком-либо псевдоевклидовом пространстве;иными словами, Л. п. сохраняет квадрат т. н. интервала событий. Л. п. является аналогом ортогональных преобразований (или обобщением понятия движения) в евклидовом пространстве. Л. п. образуют группу, называемую группой Лоренца (или общей группой Лоренца), к-рая обозначается через L. Л. п. находят применение в четырехмерном пространстве-времени специальной теории относительности, для к-рого в галилеевых координатах х, у, z, tинтервал имеет вид

где с - скорость света в вакууме.

Часто рассматривают более узкие классы Л. п. Так, Л. п., сохраняющие знак координаты t, образуют т. н. полную группу Лоренца Л. п., матрицы к-рых имеют положительный определитель, наз. собственными преобразованиями Лоренца и образуют собственную группу Лоренца Пересечение и часто наз. просто группой Лоренца.

Общая группа Л. п. состоит из комбинаций пространственных отражений, отражений во времени, пространственных поворотов и преобразований, к-рые с физич. точки зрения являются преобразованиями перехода от одной инерциальной системы отсчета к другой, движущейся относительно первой со скоростью V, а с ма-тематич. точки зрения - гиперболич. поворотом на угол y в плоскости с псевдоевклидовой метрикой. Наличие последнего типа преобразований является специфич. чертой группы Л. п.

Для перехода от галилеевой системы координат х', у', z', t' к галилеевой системе координат х, у, z, t, движущейся относительно первой со скоростью Vпараллельно оси х', указанные преобразования имеют вид

Если ввести угол гиперболического поворота y по формулам

то Л. п. примут вид

Эти преобразования часто наз. просто Л. п. Они не образуют группу: действие трех гиперболич. поворотов с непараллельными векторами скоростей может дать обычный пространственный поворот - т. н. т о м а с о в с к а я прецессия.

Часто к общим Л. п. добавляют переносы начала координат, получая при этом т. н. преобразования Пуанкаре, образующие группу Пуанкаре.

Свойства группы Л. п. сходны со свойствами ортогональных групп. Отличия связаны с наличием двух типов отражений (пространственных и временных) и с некомпактностью группы Л. п. (т. к. единичная сфера в псевдоевклидовом пространстве, т. е. множество точек, для к-рого модуль интервала до начала координат равен единице, некомпактна).

Физические приложения Л. п. связаны с Эйнштейна относительности принципом, согласно к-рому все физич. законы, кроме законов гравитации, инвариантны относительно Л. п. В ряде случаев, напр. в аксиоматической квантовой теории поля, использование этого и других столь же общих постулатов позволяет делать далеко идущие выводы о видах функциональных зависимостей между различными физич. величинами.

В различных областях физики (в особенности, в теории элементарных частиц) находят широкое применение представления групп Л. п. В соответствии с принципом относительности Эйнштейна физич. величины с различными законами преобразований - векторы, спиноры, тензоры - преобразуются по тем или иным представлениям группы Л. п. При этом оказывается, что эти представления можно характеризовать двумя инвариантами, к-рые отождествляются с массой и спином частиц, описываемых этой физич. величиной.

Инфинитезимальные Л. п., т. е. повороты на бесконечно малый угол, часто используют для получения различных законов сохранения.

Находят применения также Л. п. в касательном пространстве псевдориманова пространства; эти преобразования относятся к т. н. локальным симметриям.

Л. п. получили свое название в связи с работами Г. Лоренца (Н. Lorentz) по электронной теории, к-рые сыграли важную роль в формулировании этого понятия.

Лит.:[1] Л а н д а у Л. Д., Л и ф ш и ц Е. М., Теория поля, 6 изд., т. 2, М., 1973; [2] Н а й м а р к М. А., Линейные представления группы Лоренца, М., 1958; [3] Физический энциклопедический словарь, т. 3, М., 1963. Д. Д. Соколов.



Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "ЛОРЕНЦА ПРЕОБРАЗОВАНИЕ" в других словарях:

  • ЛОРЕНЦА ГРУППА — группа вещественных линейных однородных преобразований 4 векторов х= ={ х0, х1, х2, х3}пространства Минковского М4, сохраняющих (индефинитное) скалярное произведение где g= метрич …   Физическая энциклопедия

  • ПРЕОБРАЗОВАНИЕ ЛОРЕНЦА — ПРЕОБРАЗОВАНИЕ ЛОРЕНЦА, соотношение, выдвинутое Хендриком ЛОРЕНЦЕМ, связанное с координатами явления в пространстве и времени, наблюдаемого с двух разных точек, особенно при релятивистских скоростях. Это было показано Альбертом ЭЙНШТЕЙНОМ в 1905… …   Научно-технический энциклопедический словарь

  • Преобразование Лоренца — Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… …   Википедия

  • Лоренца преобразования — Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… …   Википедия

  • Преобразование —         одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… …   Большая советская энциклопедия

  • ГАЛИЛЕЯ ПРЕОБРАЗОВАНИЕ — преобразование, определяющее в классич. механике переход от одной инерциальной системы отсчета к другой, движущейся относительно первой прямолинейно и равномерно. При этом система отсчета понимается как четырехмерная, позволяющая фиксировать три… …   Математическая энциклопедия

  • преобразование Лоренца — Lorenco transformacija statusas T sritis fizika atitikmenys: angl. Lorentz transformation vok. Lorentz Transformation, f rus. лоренцово преобразование, n; преобразование Лоренца, n pranc. transformation de Lorentz, f …   Fizikos terminų žodynas

  • Преобразование Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Не следует путать с обращением Мёбиуса. Преобразование Мёбиуса  дробно линейная функция одного комплексного переменного, тождественно не равная константе …   Википедия

  • Преобразование Кэли — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Преобразование Мебиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»