ЛАПЛАСА ТЕОРЕМА

ЛАПЛАСА ТЕОРЕМА

- 1) Л. т. об определителях - см. ст. Алгебраическое дополнение.

2) Л. т. об аппроксимации биномиального распределения нормальным распределением; первый вариант центральной предельной теоремы теории вероятностей: если Sn - число "успехов" в п Бернулли испытаниях с вероятностью успеха р,0<р<1, то при для любых действительных чисел xi и х 21<.г 2)

- функция распределения стандартного нормального закона. Самостоятельное значение имеет т. н. локальная Л. т.: для вероятности

справедливо равенство

где

- плотность стандартного нормального распределения и равномерно для всех т, для к-рых

принадлежит какому-либо конечному интервалу.

В общем виде Л. т. была доказана П. Лапласом [1]. Один частный случай Л. т. (р=1/2) был изучен А. Му-авром [2], в связи с чем Л. т. иногда наз. теоремой Муавра - Лапласа. Для практич. применения Л. т. важно иметь представление об ошибках, возникающих при использовании приближенных формул. В более точной (по сравнению с [1]) асимптотич. формуле

остаточный член Rn(y). имеет порядок равномерно для всех действительных у. Из равномерных аппроксимаций биномиального распределения посредством нормального распределения наиболее удачна формула Я. Успенского (1937): если то для любых (/! и у 2

Для улучшения относительной точности аппроксимации С. Н. Бернштейном (1943) и В. Феллером (W. Feller, 1945) были предложены другие формулы.

Лит.:[1] L а р 1 а с е P. S., Theerie analytique des probabi-lites, P., 1812; [2] М о i v r e A. d e, Miscellanea analytica de serlebus et quadraturis, L., 1730; [3] Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, 2 изд., М., 1973; [4] F е 1 1 е г W., "Ann. Math. Statistics", 1945, v. 16, p. 319-29; [5] Ф е л л е р В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1, М., 1967. А. В. Прохоров.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "ЛАПЛАСА ТЕОРЕМА" в других словарях:

  • ЛАПЛАСА ТЕОРЕМА — одна из предельных теорем теории вероятностей. Если при каждом из n независимых испытаний вероятность появления некоторого случайного события Е равна р (0 р 1) и m число испытаний, в которых Е фактически наступает, то вероятность… …   Большой Энциклопедический словарь

  • Лапласа теорема — одна из предельных теорем теории вероятностей. Если при каждом из n независимых испытаний вероятность появления некоторого случайного события E равна р (0 …   Энциклопедический словарь

  • ЛАПЛАСА ТЕОРЕМА — одна из предельных теорем теории вероятностей. Если при каждом из п независимых испытаний вероятность появления нек рого случайного события Е равна р(0<р<1) и т число испытаний, в к рых Е фактически наступает, то вероятность неравенства… …   Естествознание. Энциклопедический словарь

  • Лапласа теорема —         простейшая из предельных теорем (См. Предельные теоремы) теории вероятностей, относящаяся к распределению отклонений частоты появления события при независимых испытаниях от его вероятности. В общем виде эта теорема доказана П. Лапласом в… …   Большая советская энциклопедия

  • Теорема Пэли — Винера — В математике теорема Пэли  Винера связывает рост целой функции на и преобразования Фурье обобщённой функции Шварца на компактном носителе. В общем, преобразование Фурье может быть определено для любой характеристической обобщённой функции;… …   Википедия

  • Теорема Ирншоу — сформулирована в XIX веке английским физиком Ирншоу. Является следствием теоремы Гаусса. Теорема Ирншоу чисто классическая (не квантовая) теорема и не имеет квантового аналога (подробности см. ниже). Содержание …   Википедия

  • Теорема разложения Гельмгольца — Теорема разложения Гельмгольца  утверждение о разложении произвольного дифференцируемого векторного поля на две компоненты: Если дивергенция и ротор векторного поля определены в каждой точке конечной открытой области V пространства, то всюду …   Википедия

  • Теорема о циркуляции магнитного поля — Теорема о циркуляции магнитного поля  одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и …   Википедия

  • Теорема Рэлея о точке перегиба — Теорема Рэлея в гидродинамике утверждает, что для плоскопараллельного течения для развития неустойчивости необходимым условием является наличие точки перегиба профиля течения. Теорема получена Рэлеем в приближении идеальной жидкости. Основное… …   Википедия

  • МУАВРА- ЛАПЛАСА ТЕОРЕМА — см. Лапласатеорема …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»