КРЫЛОВА - БОГОЛЮБОВА МЕТОД УСРЕДНЕНИЯ

КРЫЛОВА - БОГОЛЮБОВА МЕТОД УСРЕДНЕНИЯ

- метод, применяемый в теории нелинейных колебаний для исследования колебательных процессов, основанный на принципе усреднения (осреднения), заменяющем точное дифференциальное уравнение движения усредненным.

Различные схемы усреднения (Гаусса, Фату, Делоне - Хилла и др.) широко применялись в небесной механике еще задолго до работ Н. М. Крылова и Н. Н. Боголюбова. Разработка общего алгоритма, получившего название методаусреднения Крылова - Боголюбова, и теорема о близости решений точной и усредненной систем принадлежат Н. М. Крылову и Н. Н. Боголюбову (см. [1], [2]). Создание строгой теории метода усреднения, исчерпывающее выяснение сущности общего принципа усреднения принадлежат Н. Н. Боголюбову (см. [3], [4]), к-рый показал, что метод усреднения связан с существованием нек-рой замены переменных, позволяющей исключить время tиз правых частей рассматриваемых уравнений с наперед заданной степенью точности относительно малого параметра е; он же обосновал асимптотич. характер приближений, получаемых методом усреднения, и установил соответствие между решениями точных и усредненных уравнений на бесконечном временном интервале. Эти результаты получили дальнейшее развитие в работах Ю. А. Митропольского и др. (см. [5]-[8]) и применяются для изучения нелинейных колебаний.

Система уравнений, для к-рых разработан К.- Б. м. у., имеет стандартный вид:

где t - время, е - малый положительный параметр. Основные предположения, при к-рых рассматривается система (1), сводятся к достаточной гладкости функции Xпо l, x и нек-рой "возвращаемости" ее по t, обеспечивающей существование среднего значения

напр, периодичности или почти периодичности Xпо t. Согласно К.- Б. м. у. т-е приближение к решению x=x(t)системы (1) определяется выражением

в к-ром - решение "усредненного" уравнения

- функции, подбираемые из

условия, чтобы выражение (2) удовлетворяло уравнению (1) с точностью до величин порядка и чтобы Fj обладали по tтой же возвращаемостью, что и правая часть системы (11. Функции Fj находятся элементарно, функции Р j определяются в результате усреднения правой части системы (1) после подстановки в нее выражения (2). Так, в частности, для системы (1) с периодической по tправой частью, когда

функция F1 определяется по (3) согласно формуле

функции Fm и Р m при определяются по соотношению

аналогичными формулами. Обоснование метода усреднения сводится к следующему: 1) установление оценки

где при - постоянная, не зависящая от 2) доказательство существования решения x=x0(t).системы (1), находящегося в достаточно малой окрестности положения равновесия усредненной системы:

и установление свойств устойчивости, периодичности или почти периодичности этого решения; 3) доказательство существования интегрального многообразия t:

системы (1), находящегося вблизи периодической траектории усредненной системы:

и исследование поведения решении системы (1), начинающихся в окрестности многообразия т.

Лит.:[1] Крылов Н. М., Боголюбов Н. Н., Приложение методов нелинейной механики к теории стационарных колебаний, К., 1934; [2] их же, Введение в нелинейную механику, К., 1937; [3] Б о г о л ю б о в Н. Н., О некоторых статических методах в математической физике, К., 1945; [4] его ж е, "Сб. трудов Ин-та строительной механики АН УССР" 1950, № 14, с. 9-34; [5] Боголюбов Н. Н., Митропольский Ю. А., Асимптотические методы в теории нелинейных колебаний, 3 изд., М., 1963; [6] Митропольский Ю. А., Метод усреднения в нелинейной механике, К., 1971; [7] его же, Нестационарные процессы в нелинейных колебательных системах. К., 1955; [8] В о л о с о в В. М., в кн.: Механика в СССР sa 50 лет, т. 1, М., 1968, с. 115 - 35.

А. М. Самойленко.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "КРЫЛОВА - БОГОЛЮБОВА МЕТОД УСРЕДНЕНИЯ" в других словарях:

  • МАЛОГО ПАРАМЕТРА МЕТОД — в т е о р и и дифференциальных уравнений приемы построения приближенных решений дифференциальных уравнений и систем, зависящих от параметра. 1) М. п. м. для обыкновенных дифференциальных уравнении. Обыкновенные дифференциальные уравнения, к к рым …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ — дифференциальное уравнение, связывающее аргумент, искомую функцию и ее производные, взятые, вообще говоря, при различных значениях этого аргумента. Примеры: где постоянные а, t, kзаданы; т в уравнении (1) и t kt в уравнении (2) отклонения… …   Математическая энциклопедия

  • КАЧЕСТВЕННАЯ ТЕОРИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ — математическая дисциплина, изучающая свойства решений обыкновенных дифференциальных уравнений без нахождения самих решений. Основы К. т. д. у. были заложены в конце 19 в. А. Пуанкаре (см. [1], [2]) и А. М. Ляпуновым (см. [3], [4]). А. Пуанкаре… …   Математическая энциклопедия

  • ПЕРИОДИЧЕСКОЕ РЕШЕНИЕ — обыкновенного дифференциального уравнения или системы решение, периодически зависящее от независимого переменного t. Для П. p. x(t).(в случае системы х вектор) имеется такое число , что х(t+T)=x(t).при всех . Всевозможные такие Тназ. периодами… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ОБЫКНОВЕННОЕ — уравнение, в к ром неизвестной является функция от одного независимого переменного, причем в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков. Термин дифференциальные уравнения был предложен Г.… …   Математическая энциклопедия

  • НОРМАЛЬНАЯ ФОРМА — 1) Н. ф. матрицы A матрица Nзаранее определенного специального вида, получаемая из Ас помощью преобразований определенного типа. В зависимости от рассматриваемого типа преобразований, от области K, к к рой принадлежат коэффициенты А , от вида Аи …   Математическая энциклопедия

  • ВОЗМУЩЕНИЙ ТЕОРИЯ — комплекс методов исследования различных задач, используемый во многих разделах математики, механики, физики и техники. Здесь с общей точки зрения излагаются основные идеи В. т. В. т. основана на возможности приближенного описания исследуемой… …   Математическая энциклопедия

  • Митропольский, Юрий Алексеевич — В Википедии есть статьи о других людях с такой фамилией, см. Митропольский. Юрий Алексеевич Митропольский укр. Юрій Олексійович Митропольський Дата рождения …   Википедия

  • ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С МАЛЫМ ПАРАМЕТРОМ ПРИ ПРОИЗВОДНЫХ — система вида где z и у суть, соответственно, М и m мерные векторы, m>0 малый параметр. Полагая в (1) формально m=0, получим так наз. вырожденную систему Пусть решение x(t,m) системы (1) (хозначает z и ув совокупности) определяется нек рыми… …   Математическая энциклопедия

  • Крылов, Николай Митрофанович — [17 (29) нояб, 1879 11 мая 1955] сов. математик, акад. (с 1929, чл. корр. с 1928), действит. член АН УССР (с 1922), засл. деят. науки УССР (с 1939). В 1904 окончил Петербург. горный ин т. С 1912 проф. Петербург. горного ин та и с 1917 Крымского… …   Большая биографическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»