КОМПОЗИЦИОННЫЙ РЯД

КОМПОЗИЦИОННЫЙ РЯД

- конечное подмножество {а 0, a1, . . ., а п} частично упорядоченного множества с наименьшим элементом 0 и наибольшим элементом 1 такое, что и все интервалы [ai, ai+1] являются простыми интервалами. Можно говорить также о К. р. любого интервала [ а, b]частично упорядоченного множества. К. р. существует далеко не всегда.

Под К. р. универсальной алгебры понимается К. р. в решетке ее конгруэнции. Поскольку конгруэнции в группах определяются нормальными подгруппами, К. р. группы может быть определен как ее нормальный ряд (см. Подгрупп ряды), не имеющий отличных от него самого уплотнений (без повторений). Ряд

будет К. р. группы Gтогда и только тогда, когда всякая подгруппа Gi-1, i=l, 2, . . ., k, является максимальным истинным нормальным делителем подгруппы Gi.

Все факторы К. р. будут простыми группами. Всякий нормальный ряд, изоморфный с некоторым К. р., сам будет композиционным. Для К. р. групп имеет место Жордана- Гёлъдера теорема. Аналогично определяются и аналогичными свойствами обладают К. р. колец и, вообще, W-групп (см. [2]).

Лит.:[1] Кон П. М., Универсальная алгебра, пер. с англ., М., 1968; [2] Курош А. Г., Лекции по общей алгебре, 2 изд., М., 1973.

О. А. Иванова, Л. А. Скорняков.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "КОМПОЗИЦИОННЫЙ РЯД" в других словарях:

  • Нормальный ряд подгрупп — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Нормальный ряд — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Центральный ряд подгрупп — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Центральный ряд — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Ряды подгрупп — В математике ряд подгрупп  это цепь подгрупп вида . Ряды подгрупп могут упростить изучение группы сводя его к изучению подгрупп этой группы и к изучению взаимосвязей между ними. Ряды подгрупп могут формировать важные инварианты заданной… …   Википедия

  • ДЕДЕКИНДОВА РЕШЕТКА — дедекиндова структура, модулярная решетка (структура), решетка, в к рой справедлив модулярный закон, т. е. влечет (a+b)c=а+bс для всякого Ь. Высказанное требование равносильно справедливости тождества ( ас+b) с=ас+bс. Примерами Д. р. служат… …   Математическая энциклопедия

  • Теорема Жордана — Гёльдера — Если у группы существует композиционный ряд , то его длина и все факторы определены однозначно, с точностью до перестановок и изоморфизмов[1]. Это классичес …   Википедия

  • Словарь терминов теории групп — Для общего ознакомления с теорией групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И К Л М Н О П Р …   Википедия

  • Изоморфизм групп — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Изоморфные группы — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»