- ЗАМКНУТОЕ МНОГООБРАЗИЕ
- компактное многообразие без края. Например, совокупность всех краевых точек k-мерного компактного многообразия есть (k-1)-мсрное 3. м.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
- компактное многообразие без края. Например, совокупность всех краевых точек k-мерного компактного многообразия есть (k-1)-мсрное 3. м.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
Замкнутое многообразие — в топологии компактное связное многообразие без края. Примеры окружность, сфера, тор, бутылка Клейна См. также Многообразие Компактное пространство Связное пространство Литература Бронштейн И. Н., Семендяев К. А.… … Википедия
Многообразие Илса–Койпера — Многообразием Илса–Койпера (Eells–Kuiper) называется компактификация евклидова пространства сферой , где n = 2, 4, 8, и 16. n = 2: многообразие Илса–Койпера диффеоморфно вещественной проективной плоскости . Для … Википедия
Многообразие Илса — Многообразием Илса Кейпера называется компактификация евклидова пространства сферой , где n = 2, 4, 8, и 16. n = 2: многообразие Илса Кейпера диффеоморфно вещественной проективной плоскости . Для оно является… … Википедия
Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
МНОГООБРАЗИЕ — геометрический объект, локально имеющий строение (топологическое, гладкое, гомологическое или иное) числового пространства или другого векторного пространства. Это фундаментальное понятие математики уточняет и обобщает на любое число измерений… … Математическая энциклопедия
Многообразие — математическое понятие, уточняющее и обобщающее на любое число измерений понятия линии и поверхности, не содержащих особых точек (т. e. линии без точек самопересечения, концевых точек и т. п. и поверхности без самопересечений, краев и т.… … Большая советская энциклопедия
Дифференцируемое многообразие — Дифференцируемое многообразие топологическое пространство, наделенное дифференциальной структурой. Дифференциальные многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях… … Википедия
КАНТОРОВО МНОГООБРАЗИЕ — га мерный бикомпакт X,dim X=n, в к ром любая перегородка В между непустыми множествами имеет размерность Эквивалентное определение: re мерное К. м. есть n мерный бикомпакт X, обладающий тем свойством, что при всяком представлении его в виде суммы … Математическая энциклопедия
ТРЕХМЕРНОЕ МНОГООБРАЗИЕ — топологическое пространство, каждая точка к рого имеет окрестность, гомеоморфную трехмерному числовому пространству или замкнутому полупространству Это определение обычно дополняют требованием того, чтобы Т. м. как топологич. пространство, было… … Математическая энциклопедия