ЖОРДАНА - ГЁЛЬДЕРА ТЕОРЕМА

ЖОРДАНА - ГЁЛЬДЕРА ТЕОРЕМА

если группа обладает композиционными рядами, то любые два ее композиционных ряда изоморфны. К. Жордан [1], [2] и О. Гёльдер [3], занимаясь вопросом о разрешимости уравнений в радикалах (см. Галуа теория), исследовали группы подстановок. Для этих групп К. Жордан ввел понятие композиционного и главного рядов и доказал, что индексы двух одноименных рядов (т. е. индексы подгруппы Gi в Gi+1), с точностью до расположения, одинаковы. Иными словами, было доказано совпадение последовательностей порядков факторов двух композиционных (главных) рядов с точностью до расположения. О. Гёльдер доказал изоморфизм соответствующих факторов. О. Шрейером [4] было доказано еще более общее утверждение: любые два нормальных ряда произвольной группы обладают изоморфными уплотнениями (теорема Шрейера). Ж.- Г. т. была доказана также для групп с произвольной областью операторов (Э. Нётер, Е. Noether, В. Крулль, W. Krull), откуда, в частности, вытекали аналогичные теоремы для характеристических и вполне характеристич. рядов.

В дальнейшем обобщения Ж.- Г. т. пошли по следующим направлениям. 1) Были получены обобщения теорем Шрейера и Жордана - Гёльдера для бесконечных нормальных систем и, в частности, вполне упорядоченных нормальных и композиционных рядов, а также доказано, что все возрастающие нормальные ряды группы с простыми факторами изоморфны (эти ряды могут и не быть композиционными) (см. [5]). 2) Ж.- Г. т. была перенесена на ряды идеалов колец и других алгебраич. образований. Эти направления объединились рядом результатов для W-групп (мультиоператорных групп), W-алгебр и для универсальных алгебр с одноэлементной подалгеброй и перестановочными конгруэнциями (см. [5] - [8]). 3) Рассматривались различные способы обобщения Ж.- Г. т. на языке теории решеток и частично упорядоченных множеств. Получено обобщение теоремы Шрейера для цепочек элементов дедекиндовых решеток. В ряде работ для определения нормального ряда элементов решетки вводилось дополнительное отношение нормальности или операция умножения (см. [5], [6], [9] - [И]). 4) Были получены обобщения Ж.- Г. т. и теоремы Шрейера для нормальных категорий (см. [8]).

Лит.:[1] Jоrdan С, "С. r. Acad. sci.", 1869, t. 68, p. 257; [2] eго же, Traite des substitutions et des equations algebriques, P., 1870 (2 ed., 1957); [3] Holder O., "Math. Ann.", 1889, Bd 34, S. 26-56; [4] Sсhreier O., "Abh. Math. Semin. Univ. Hamburg", 1928, Bd 6, № 3-4, S. 300-02; [5] Курош А. Г., Теория групп, 3 изд., М., 1967; [6] Биркгоф Г., Теория структур, пер. с англ., М., 1952; [7] Кон П., Универсальная алгебра, пер. с англ., М., 1968; [8] Цаленко М. Ш., Шульгейфер Е. Г., Основы теории категорий, М., 1974; [9] Итоги науки. Алгебра. 1964, М., 1966, с. 237-74; [10] Итоги науки. Алгебра. Топология. Геометрия. 1966, М., 1968, с. 109- 136; 1968, М., 1970, с. 101-54; [11] Фофанова Т. С, в сб.: Упорядоченные множества и решетки, в. 3, Саратов, 1974, с. 99 - 108.

И. В. Стеллецкий.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "ЖОРДАНА - ГЁЛЬДЕРА ТЕОРЕМА" в других словарях:

  • Теорема Жордана — Гёльдера — Если у группы существует композиционный ряд , то его длина и все факторы определены однозначно, с точностью до перестановок и изоморфизмов[1]. Это классичес …   Википедия

  • Теория групп — Группа (математика) Теория групп Осно …   Википедия

  • НОРМАЛЬНЫЙ РЯД — группы ряд нормальных подгрупп группы (см. Подгрупп ряд). Если каждый член ряда нормален не во всей группе, а только в предыдущем члене, то такой ряд наз. субнормальным. Кроме конечных рассматриваются также бесконечные убывающие и бесконечные… …   Математическая энциклопедия

  • ПОДГРУПП РЯД — конечная цепочка вложенных одна в другую подгрупп группы G: (*) или Рассматриваются также бесконечные цепочки вложенных подгрупп (убывающие и возрастающие), занумерованные порядковыми числами или даже элементами упорядоченного множества. Их чаще… …   Математическая энциклопедия

  • Классификация простых конечных групп — Теорема о классификации простых конечных групп  теорема теории групп, классифицирующая с точностью до изоморфизма простые конечные группы («элементарные кирпичики», из которых можно построить любую конечную группу, так же, как любое… …   Википедия

  • Жордан, Мари Энмон Камиль — Мари Энмон Камиль (Камилл) Жордан Marie Ennemond Camille Jordan Дата рождения …   Википедия

  • Гёльдер, Отто — Отто Гёльдер Otto Ludwig Hölder Отто Гёльдер Дата рождения: 22 декабря 1859(1859 12 22) …   Википедия

  • Жордан Мари Энмон Камиль — Камиль Жордан Мари Энмон Камиль (Камилл) Жордан (фр. Marie Ennemond Camille Jordan, 5 января 1838  22 января 1922)  французский математик, известный благодаря своим фундаментальным работам в теории групп и «Курсу анализа». Он родился в Лионе и… …   Википедия

  • Камилл Жордан — Камиль Жордан Мари Энмон Камиль (Камилл) Жордан (фр. Marie Ennemond Camille Jordan, 5 января 1838  22 января 1922)  французский математик, известный благодаря своим фундаментальным работам в теории групп и «Курсу анализа». Он родился в Лионе и… …   Википедия

  • Мари Энмон Камиль Жордан — Камиль Жордан Мари Энмон Камиль (Камилл) Жордан (фр. Marie Ennemond Camille Jordan, 5 января 1838  22 января 1922)  французский математик, известный благодаря своим фундаментальным работам в теории групп и «Курсу анализа». Он родился в Лионе и… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»