ДЖЕКОБСОНА КОЛЬЦО


ДЖЕКОБСОНА КОЛЬЦО

- коммутативное кольцо с единицей, любой простой идеал к-рого является пересечением максимальных идеалов, его содержащих, т. е. кольцо, любое целостное факторкольцо к-рого имеет нулевой Джекобсона радикал. Напр., любое артиново кольцо, кольцо целых чисел (вообще, любое дедекиндово кольцо, не являющееся полулокальным) или абсолютно плоское кольцо являются Д. к. Напротив, локальное не артиново кольцо не будет Д. к.

Если Аесть Д. к., а В- целая A-алгебра или А- алгебра конечного типа, то Весть Д. к.; в частности, факторкольцо Д. к. есть Д. к. Кольцо многочленов от конечного числа переменных над полем Кявляется Д. к.; в случае бесконечного числа переменных ответ зависит от соотношения числа переменных и мощности поля К. Кольцо Аявляется Д. к., когда пространство максимальных идеалов кольца Аквазигомеоморфно спектру Spec (A); это определение приводит к понятию схемы Джекобсона.

Лит.:[1] Бурбаки Н., Коммутативная алгебра, пер. с франц., М., 1971.

В. И. Данилов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ДЖЕКОБСОНА КОЛЬЦО" в других словарях:

  • ДЖЕКОБСОНА РАДИКАЛ — кольца A идеал J(А)ассоциативного кольца А, удовлетворяющий следующим двум условиям: 1) J(A) наибольший квазирегулярный идеал в А(кольцо Rназ. квазирегулярным, если для любого его элемента аразрешимо уравнение а+x + ах=0);2) в факторкольце нет… …   Математическая энциклопедия

  • ПРИМАРНОЕ КОЛЬЦО — кольцо с единицей, фак торкольцо к рого по радикалу Джекобсона изоморфно кольцу матриц над телом или, что то же самое, является артиновым простым кольцом. Если идемпотенты П. к. R с радикалом Джекобсона J можно поднимать по модулю J (т. е. у… …   Математическая энциклопедия

  • ПОЛУСОВЕРШЕННОЕ КОЛЬЦО — кольцо, каждый конечно порожденный левый (или каждый конечно порожденный правый) модуль над к рым обладает проективным накрытием. Кольцо Rс радикалом Джекобсона J оказывается П. к. тогда и только тогда, когда Rполулокально и у каждого идемпотента …   Математическая энциклопедия

  • РЕГУЛЯРНОЕ КОЛЬЦО — (в смысле Неймана) ассоциативное кольцо (обычно с единицей), в к ром уравнение разрешимо для любого а. Следующие свойства ассоциативного кольца R с единицей равносильны: а) R есть Р. к.; б) каждый главный левый идеал кольца R порождается… …   Математическая энциклопедия

  • АРТИНОВО КОЛЬЦО — артипово справа кольцо, кольцо, удовлетворяющее условию минимальности для правых идеалов, т. е. кольцо, в к ром любое непустое частично упорядоченное по включению множество Мправых идеалов имеет минимальный элемент (см. [1]) такой правый идеал из …   Математическая энциклопедия

  • МАТРИЦ КОЛЬЦО — полное кольцо матриц, кольцо всех квадратных матриц фиксированного порядка над кольцом R. Кольцо матриц над R обозначается Rn или Mn(R). Всюду ниже R ассоциативное кольцо с единицей 1. Кольцо Rn изоморфно кольцу End Mвсех эндоморфизмов свободного …   Математическая энциклопедия

  • КВАЗИФРОБЕНИУСОВО КОЛЬЦО — QF к ольцо, артиново кольцо (слева и справа), удовлетворяющее аннуляторным условиям: для каждого левого (правого) идеала L(Н)(см. Аннулятор). Артиново слева кольцо, удовлетворяющее лишь одному из аннуляторных условий, может не быть К. к. Интерес… …   Математическая энциклопедия

  • ЛОКАЛЬНОЕ КОЛЬЦО — коммутативное кольцо с единицей, имеющее единственный максимальный идеал. Если А Л. к. с максимальным идеалом то факторкольцо является полем и наз. полем вычетов Л. к. А. Примеры Л. к. Любое поле или кольцо нормирования является локальным.… …   Математическая энциклопедия

  • СОВЕРШЕННОЕ КОЛЬЦО — левое ассоциативное кольцо, каждый левый модуль над к рым обладает проективным накрытием. Правое совершенное кольцо определяется аналогично. Левое С. к. может и не быть правым С. к. Эквивалентны следующие свойства кольца R: (1) R левое С. к.; (2) …   Математическая энциклопедия

  • САМОИНЪЕКТИВНОЕ КОЛЬЦО — л е в о е кольцо, инъективное как левый модуль над собой. Симметричным образом определяется п р а в о е С. к. Классически полупростые кольца и все кольца вычетов суть С. к. Если R С. к. с радикалом Джекобсона J, то факторкольцо R/J регулярно в… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.