ДЖЕКОБСОНА РАДИКАЛ — кольца A идеал J(А)ассоциативного кольца А, удовлетворяющий следующим двум условиям: 1) J(A) наибольший квазирегулярный идеал в А(кольцо Rназ. квазирегулярным, если для любого его элемента аразрешимо уравнение а+x + ах=0);2) в факторкольце нет… … Математическая энциклопедия
ПРИМАРНОЕ КОЛЬЦО — кольцо с единицей, фак торкольцо к рого по радикалу Джекобсона изоморфно кольцу матриц над телом или, что то же самое, является артиновым простым кольцом. Если идемпотенты П. к. R с радикалом Джекобсона J можно поднимать по модулю J (т. е. у… … Математическая энциклопедия
ПОЛУСОВЕРШЕННОЕ КОЛЬЦО — кольцо, каждый конечно порожденный левый (или каждый конечно порожденный правый) модуль над к рым обладает проективным накрытием. Кольцо Rс радикалом Джекобсона J оказывается П. к. тогда и только тогда, когда Rполулокально и у каждого идемпотента … Математическая энциклопедия
РЕГУЛЯРНОЕ КОЛЬЦО — (в смысле Неймана) ассоциативное кольцо (обычно с единицей), в к ром уравнение разрешимо для любого а. Следующие свойства ассоциативного кольца R с единицей равносильны: а) R есть Р. к.; б) каждый главный левый идеал кольца R порождается… … Математическая энциклопедия
АРТИНОВО КОЛЬЦО — артипово справа кольцо, кольцо, удовлетворяющее условию минимальности для правых идеалов, т. е. кольцо, в к ром любое непустое частично упорядоченное по включению множество Мправых идеалов имеет минимальный элемент (см. [1]) такой правый идеал из … Математическая энциклопедия
МАТРИЦ КОЛЬЦО — полное кольцо матриц, кольцо всех квадратных матриц фиксированного порядка над кольцом R. Кольцо матриц над R обозначается Rn или Mn(R). Всюду ниже R ассоциативное кольцо с единицей 1. Кольцо Rn изоморфно кольцу End Mвсех эндоморфизмов свободного … Математическая энциклопедия
КВАЗИФРОБЕНИУСОВО КОЛЬЦО — QF к ольцо, артиново кольцо (слева и справа), удовлетворяющее аннуляторным условиям: для каждого левого (правого) идеала L(Н)(см. Аннулятор). Артиново слева кольцо, удовлетворяющее лишь одному из аннуляторных условий, может не быть К. к. Интерес… … Математическая энциклопедия
ЛОКАЛЬНОЕ КОЛЬЦО — коммутативное кольцо с единицей, имеющее единственный максимальный идеал. Если А Л. к. с максимальным идеалом то факторкольцо является полем и наз. полем вычетов Л. к. А. Примеры Л. к. Любое поле или кольцо нормирования является локальным.… … Математическая энциклопедия
СОВЕРШЕННОЕ КОЛЬЦО — левое ассоциативное кольцо, каждый левый модуль над к рым обладает проективным накрытием. Правое совершенное кольцо определяется аналогично. Левое С. к. может и не быть правым С. к. Эквивалентны следующие свойства кольца R: (1) R левое С. к.; (2) … Математическая энциклопедия
САМОИНЪЕКТИВНОЕ КОЛЬЦО — л е в о е кольцо, инъективное как левый модуль над собой. Симметричным образом определяется п р а в о е С. к. Классически полупростые кольца и все кольца вычетов суть С. к. Если R С. к. с радикалом Джекобсона J, то факторкольцо R/J регулярно в… … Математическая энциклопедия