Интегральные уравнения

Интегральные уравнения
        уравнения, содержащие неизвестные функции под знаком интеграла. Многочисленные задачи физики и математической физики приводят к И. у. различных типов. Пусть, например, требуется с помощью некоторого оптического прибора получить изображение линейного объекта А, занимающего отрезок 0 ≤ x l оси Ox, причём освещённость объекта характеризуется плотностью u(x). Изображение В представляет собой некоторый отрезок другой оси x1; последний путём подходящего выбора начала отсчёта и единицы длины также можно совместить с отрезком 0 ≤ x1 l . Если дифференциально малый участок (х, х + Δх) объекта А вызывает освещённость изображения В с плотностью K(x1, x)u(x)dx, где функция K(x1, x) определяется свойствами оптического прибора, то полная освещённость изображения будет иметь плотность
        
        В зависимости от того, хотят ли добиться заданной освещённости v(x1) изображения или «точного» фотографического изображения [v(x) = ku(x), где постоянная k заранее не фиксируется], или, наконец, определённой разницы освещённости А и В [u(x) — v(x) = f(x)], приходят к различным И. у. относительно функции u(x):
        
        
         Вообще, линейным интегральным уравнением 1-го рода называется уравнение вида
        Вообще, линейным интегральным уравнением 1-го рода называется уравнение вида
         линейным интегральным уравнением 2-го рода, или уравнением Фредгольма,—уравнение вида
        линейным интегральным уравнением 2-го рода, или уравнением Фредгольма,—уравнение вида
        
        [при f (x) ≡ 0 оно называется однородным уравнением Фредгольма]; обычно рассматриваются уравнения Фредгольма с параметром λ:
         Во всех уравнениях функция
        Во всех уравнениях функция
        
        так называемое ядро И. у. — известна, так же, как функция f (x) (а хb); искомой является функция u(x) (а хb).
         Функции K(x, y), f (x), u(x) и параметр уравнения λ могут принимать как действительные, так и комплексные значения. В частном случае, когда ядро K(x, y) обращается в нуль при у > х, получается уравнение Вольтерра:
        
         И. у. называется особым, если хотя бы один из пределов интегрирования бесконечен или ядро K(x, y) обращается в бесконечность в одной или нескольких точках квадрата а хb, а yb или на некоторой линии. И. у. может относиться и к функциям нескольких переменных: таково, например, уравнение
         Рассматриваются также нелинейные И. у., например уравнения вида
        Рассматриваются также нелинейные И. у., например уравнения вида
         или
        или
        
         Линейные И. у. 2-го рода решаются следующими методами: 1) решение u(x) получается в виде ряда по степеням λ (сходящегося в некотором круге |λ|<K) с коэффициентами, зависящими от х (метод Вольтерра — Неймана); 2) решение u(x), при тех значениях λ, при которых оно вообще существует, выражается через некоторые целые функции от λ (метод Фредгольма); 3) в случае, когда ядро симметрично, т. е. К(х, y) ≡ К(у, x), решение u(x) выражается в виде ряда по ортогональным функциям uк(х), являющимся ненулевыми решениями соответствующего однородного уравнения
        
        (последнее имеет отличные от нуля решения лишь при некоторых специальных значениях параметра λ = λк, k = 1, 2, ...) (метод Гильберта — Шмидта); 4) в некоторых частных случаях решение сравнительно просто получается с помощью Лапласа преобразования (См. Лапласа преобразование); 5) в случае, когда
        
        (так называемое вырожденное ядро), отыскание u(х) сводится к решению системы алгебраических уравнений. Приближённые решения можно получить, либо применив к К(х, y) некоторым вырожденным ядром, мало отличающимся от К(х, у). К И. у. часто сводятся краевые задачи для дифференциальных уравнений, обыкновенных и с частными производными; такое сведение имеет и теоретическую и практическую ценность.
         Лит.: Смирнов В. И., Курс высшей математики, 3 изд., т. 4, М., 1957; Петровский И. Г., Лекции по теории интегральных уравнений, 3 изд., М., 1965; Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. — М., 1962.
         Д. А. Васильков.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Интегральные уравнения" в других словарях:

  • Интегральные уравнения — Интегральное уравнение  функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро дифференциальном уравнении.… …   Википедия

  • Сингулярные интегральные уравнения —         Интегральные уравнения с ядрами, обращающимися в бесконечность в области интегрирования так, что соответствующий несобственный интеграл, содержащий неизвестную функцию, расходится и заменяется своим главным значением по Коши. Примером С.… …   Большая советская энциклопедия

  • ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ — ур ния, содержащие неизвестные ф ции под знаком интеграла. К И. у. приводятся мн. задачи естествознания и техники, например задача о колебаниях, задача о рассеянии лучистой энергии и т. д …   Большой энциклопедический политехнический словарь

  • УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ — дифференциальные уравнения с частными производными, интегральные уравнения, к которым приводит математический анализ физических явлений. См., напр., Волновое уравнение, Лапласа уравнение, Теплопроводности уравнение …   Большой Энциклопедический словарь

  • уравнения фаддеева — Интегральные уравнения движения квантовомеханической системы трех взаимодействующих частиц …   Политехнический терминологический толковый словарь

  • Уравнения математической физики —         дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… …   Большая советская энциклопедия

  • уравнения математической физики — дифференциальные уравнения с частными производными, интегральные уравнения, к которым приводит математический анализ физических явлений. См., например, Волновое уравнение, уравнение Лапласа, уравнение теплопроводности. * * * УРАВНЕНИЯ… …   Энциклопедический словарь

  • УРАВНЕНИЯ — Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… …   Энциклопедия Кольера

  • Интегральные преобразования — Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач …   Википедия

  • Интегро-дифференциальные уравнения —         уравнения, содержащие неизвестную функцию под знаком интеграла и под знаком производной. Например, уравнение, полученное итальянским математиком В. Вольтерра в задаче о крутильных колебаниях:                  Иногда И. д. у. можно свести… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»