- Сферическая тригонометрия
-
математическая дисциплина, изучающая зависимости между углами и сторонами сферических треугольников (см. Сферическая геометрия). Пусть А, В, С — углы и а, b, с — противолежащие им стороны сферического треугольника ABC (см. рис.). Углы и стороны сферического треугольника связаны следующими основными формулами С. т.:cos а = cos b cos с + sin b sin с cos А, (2)cos A = - cos B cos С + sin B sin С cos a, (21)sin a cos B = cos b sin c - sin b cos с cos А, (3)sin А cos b = cos B sin C + sin B cos С cos a; (31)в этих формулах стороны а, b, с измеряются соответствующими центральными углами, длины этих сторон равны соответственно aR, bR, cR, где R — радиус сферы. Меняя обозначения углов (и сторон) по правилу круговой перестановки: А → В → С → А (а → b → с → а), можно написать другие формулы С. т., аналогичные указанным. Формулы С. т. позволяют по любым трём элементам сферического треугольника определить три остальные (решить треугольник).Для прямоугольных сферических треугольников (А = 90°, а — гипотенуза, b, с — катеты) формулы С. т. упрощаются, например:sin b = sin a sin В, (1')cos a = cos b cos c, (2')sin a cos B = cos b sin c. (3')Для получения формул, связывающих элементы прямоугольного сферического треугольника, можно пользоваться следующим мнемоническим правилом (правилом Непера): если заменить катеты прямоугольного сферического треугольника их дополнениями и расположить элементы треугольника (исключая прямой угол А) по кругу в том порядке, в каком они находятся в треугольнике (то есть следующим образом: В, а, С, 90° - b, 90° - с), то косинус каждого элемента равен произведению синусов неприлежащих элементов, например,cos а = sin (90° - с) sin (90° - b)или, после преобразования,cos а = cos b cos с (формула 2').При решении задач удобны следующие формулы Деламбра, связывающие все шесть элементов сферического треугольника:
,
При решении многих задач сферической астрономии, в зависимости от требуемой точности, часто оказывается достаточным использование приближённых формул: для малых сферических треугольников (то есть таких, стороны которых малы по сравнению с радиусом сферы) можно пользоваться формулами плоской тригонометрии; для узких сферических треугольников (то есть таких, у которых одна сторона, например а, мала по сравнению с другими) применяют следующие формулы:(3’’)
или более точные формулы:С. т. возникла значительно раньше плоской тригонометрии. Свойства прямоугольных сферических треугольников, выражаемые формулами (1')—(3'), и различные случаи их решения были известны ещё греческим учёным Менелаю (1 в.) и Птолемею (2 в.). Решение косоугольных сферических треугольников греческие учёные сводили к решению прямоугольных. Азербайджанский учёный Насирэддин Туей (13 в.) систематически рассмотрел все случаи решения косоугольных сферических треугольников, впервые указав решение в двух труднейших случаях. Основные формулы косоугольных сферических треугольников были найдены арабским учёным Абу-ль-Вефа (10 в.) [формула (1)], немецким математиком И. Региомонтаном (середина 15 в.) [формулы типа (2)], французским математиком Ф. Виетом (2-я половина 16 в.) [формулы типа (21)] и Л. Эйлером (Россия, 18 в.) [формулы типа (3) и (31)]. Эйлер (1753 и 1779) дал всю систему формул С. т. Отдельные удобные для практики формулы С. т. были установлены шотландским математиком Дж. Непером (конец 16 — начало 17 вв.), английским математиком Г. Бригсом (конец 16 — начало 17 вв.), русским астрономом А. И. Лекселем (2-я половина 18 в.), французским астрономом Ж. Деламбром (конец 18 — начало 19 вв.) и др.Лит. см. при ст. Сферическая геометрия.Рис. к ст. Сферическая тригонометрия.
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.
Полезное
Смотреть что такое "Сферическая тригонометрия" в других словарях:
Сферическая тригонометрия — Сферическая тригонометрия раздел тригонометрии, в котором изучаются зависимости между величинами углов и длинами сторон сферических треугольников. Применяется для решения различных геодезических и астрономических задач. Содержание 1 История … Википедия
СФЕРИЧЕСКАЯ ТРИГОНОМЕТРИЯ — область математики, в которой изучаются зависимости между сторонами и углами сферических треугольников (т. е. треугольников на поверхности сферы), образующихся при пересечении трех больших кругов. Сферическая тригонометрия тесно связана со… … Большой Энциклопедический словарь
СФЕРИЧЕСКАЯ ТРИГОНОМЕТРИЯ — исследует свойства треугольник., начерченных на сферическ. поверхности, образуемых на шаре дугами кругов. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка
сферическая тригонометрия — область математики, в которой изучаются зависимости между сторонами и углами сферических треугольников (то есть треугольников на поверхности сферы), образующихся при пересечении трёх больших кругов. Сферическая тригонометрия тесно связана со… … Энциклопедический словарь
СФЕРИЧЕСКАЯ ТРИГОНОМЕТРИЯ — математич. дисциплина, изучающая зависимости между углами и сторонами сферических треугольников (см. Сферическая геометрия). Пусть А, В, С углы и а, b, с противолежащие им стороны сферического треугольника ABC. Углы и стороны сферич. треугольника … Математическая энциклопедия
СФЕРИЧЕСКАЯ ТРИГОНОМЕТРИЯ — область математики, в к рой изучаются зависимости между сторонами и углами сферич. треугольников (т. е. треугольников на поверхности сферы) , образующихся при пересечении трёх больших кругов. С. т. тесно связана со сферич. астрономией … Естествознание. Энциклопедический словарь
Эксцесс (сферическая тригонометрия) — Сферический треугольник Эксцесс сферического треугольника, или сферический избыток величина в сф … Википедия
Теорема Лежандра (сферическая тригонометрия) — Теорема Лежандра в сферической тригонометрии позволяет упростить решение сферического треугольника, если известно, что его стороны достаточно малы по сравнению с радиусом сферы, на которой он расположен. Формулировка … Википедия
Сферическая теорема Пифагора — Прямоугольный сферический треугольник с гипотенузой c, катетами a и b и прямым углом C. Сферическая теорема Пифагора теорема, устанавливающая соотношение между сторонами прямоугольного … Википедия
Сферическая геометрия — Большой круг всегда делит сферу на две равные половины. Центр большого круга совпадает с центром сферы … Википедия