Взаимные поляры*

Взаимные поляры*
— начертим на плоскости какую-либо кривую второго порядка и из какой-либо точки А проведем (см. черт.) две касательные к этой прямой; прямая аа 1, проходящая через точки касания, называется полярой полюса А относительно взятой кривой. Другой полюс В (см. черт.) будет иметь полярой прямую bb1; найдем точку p пересечения этих поляр. В аналитической геометрии доказывается, что если возьмем новый полюс С на прямой, соединяющей два первые полюса А и В, то поляра cc1 этого полюса будет проходить через точку p пересечения поляр аa 1, и bb1. Первоначально подобное же свойство было доказано Монжем для поверхностей второго порядка; именно он показал, что если вершина конуса, описанного около поверхности второго порядка, движется по плоскости, то плоскость кривой соприкосновения проходит через одну и ту же точку.

Если через какой-либо полюс А провести прямую и определить точки пересечения ее α и β с коническим сечением и точку Е пересечения с полярой полюса А, то окажется, что:

AE = 2A α ∙A β /(A α + A β )

и отсюда:

А Δ∙АЕАΔ∙Аа = A α ∙A β A α АЕ ... (1),

но (см. черт.): АЕ = аE,

АЕ — Аβ = — βЕ;

поэтому из равенства (1) следует, что

Аа∙ βЕ/AΔ ∙ α E = —1,

т. е. что секущая разделяется точками А, а, Е и β в гармоническом отношении (см. Ангармоническое отношение).

Всякому полюсу, где бы он ни находился, соответствует своя поляра; так, поляра полюса p есть прямая АВС (см. черт.).



По отношению ко взятому за основание поляр и полюсов коническому сечению всякой кривой линии S соответствует взаимно-поляpная ей кривая s, которая определится как геометрическое место полюсов, взаимных касательным прямым кривой S. Обе кривые взаимно-полярны относительно основного конического сечения, так что полюсам, находящимся на кривой S, соответственными полярами служат касательные кривой s.

Теория взаимных поляр служит в геометрии основанием принципа двойственности, состоящего в том, что каждой теореме, относящейся к каким бы то ни было кривым или прямым S', S", S"', ... отвечает ей взаимная теорема, относящаяся ко взаимным (по отношению к основному коническому сечению) кривым s', s", s"' .... Например, теореме:

"Поляры полюсов, находящихся на одной прямой, пересекаются в одной точке — в полюсе прямой", соответствует другая, ей взаимная: "полюсы поляр, проходящих через одну точку, находятся на одной прямой — поляре точки".

Д. Бобылев.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Взаимные поляры*" в других словарях:

  • Взаимные поляры — начертим на плоскости какую либо кривую второго порядка и из какой либо точки А проведем (см. черт.) две касательные к этой прямой; прямая аа1, проходящая через точки касания, называется полярой полюса А относительно взятой кривой. Другой полюс В …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • РИМАНА ГЕОМЕТРИЯ — э л л и п т и ч е с к а я г е о м е т р и я, одна из неевклидовых геометрий, т. е. геометрич, теория, основанная на аксиомах, требования к рых отличны от требований аксиом евклидовой геометрии. В отличие от евклидовой геометрии в Р. г.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»