- Арифметические ряды…
-
Пусть будет ряд:(A)……u0, u1, u2, u3,……Если из этого ряда через вычитание каждого члена из последующего выведем другой ряд(B)……u1 — u0, u2 — u1, u3 — u2……равным образом, через вычитание каждого члена ряда (В) из следующего составим ряд(C)……u2 — 2u1+u0, u3 — 2u2+u1, u4 — 2u3+u2,……и другие подобные ряды (D), (E)… (N), то (В), (С)… по отношению к (А) будут первым, вторым и т. д. разностным рядом. Если n-ый разностный ряд будет состоять из равных членов, отличных от нуля, то такой ряд называется арифметическим рядом n-го порядка. Очевидно, что члены (n + 1)-го, (n + 2)-го и т. д. разностных рядов будут равны нулю. Отсюда легко заключить, что арифметическая прогрессия a, a+b, a+2b, a+3b,… есть арифметический ряд 1-го порядка, для которого постоянный член 1-го разностного ряда = 1.b.Ряд a2, (a + b)2, (a + 2b)2, (a + 3b)3… есть арифметический ряд 2-го порядка, где постоянный член 1-го разностного ряда = 1.2.b2, и т. д.Ряд an, (a + b)n, (a + 2b)n, (a + 3b)n… есть арифметический ряд n-го порядка, для которого постоянный член 1-го разностного ряда = 1.2.3….nbn. Очевидно, что исследование свойств их приводится к исчислению разностей.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.