Ньютона бином

Ньютона бином

Бином Ньютона — это формула

(a+b)^n = {n\choose 0}a^n + {n\choose 1}a^{n-1}b + \dots + {n\choose k}a^{n-k}b^k + \dots + {n\choose n}b^n,

где {n\choose k}=\frac{n!}{k!(n-k)!} — биномиальные коэффициенты, n — неотрицательное целое число.

Содержание

Доказательство

(a+b)^n = \sum_{k=0}^n {n \choose k } a ^ {n-k} b ^ {k}


Докажем это равенство, используя метод математической индукции:

База индукции: n = 1

(a + b)1 = a + b


Шаг индукции:

Пусть утверждение для n верно:

(a+b)^n = \sum_{k=0}^n {n \choose k } a ^ {n-k} b ^ {k}

Тогда надо доказать утверждение для n + 1:


(a+b)^{n+1} = \sum_{k=0}^{n+1} {{n+1} \choose k } a ^ {n+1-k} b ^ {k}

Начнём доказательство:

(a+b)^{n+1} = (a+b)(a+b)^n=(a+b)\sum_{k=0}^{n} {n \choose k} a ^ {n-k} b ^ {k} = \sum_{k=0}^n {n \choose k} {a ^ {n - k + 1} b ^ {k}}\quad + \quad \sum_{k=0}^n {n \choose k} a ^ {n-k} b ^ {k+1}

Извлечём из первой суммы слагаемое при k = 0

 \sum_{k=0}^n {n \choose k} {a ^ {n - k + 1} b ^ {k}} = a^{n+1} + \sum_{k = 1}^n {n \choose k} a ^ {n - k + 1} b ^ k

Извлечём из второй суммы слагаемое при k = n

\sum_{k=0}^n {n \choose k} a ^ {n-k} b ^ {k+1} = b^{n+1} + \sum_{k=0}^{n-1}{n \choose k}a^{n - k} b ^ {k+1} = 
b^{n+1} + \sum_{k = 1}^n {n \choose {k-1}} a^{n - k + 1} b ^ {k}

Теперь сложим преобразованные суммы:

a^{n+1} + \sum_{k = 1}^n {n \choose k} a ^ {n - k + 1} b ^ k \quad + \quad b^{n+1} + \sum_{k = 1}^n {n \choose {k-1}} a^{n - k + 1}  b ^ {k} = a ^ {n + 1} + b ^ {n + 1} + \sum_{k = 1}^n \left( {n \choose k} + {n \choose {k - 1} } \right) a ^ {n - k + 1} b ^ k =
=\sum_{k=0}^0 {n+1 \choose k} a ^ {n + 1 - k} b ^ k \quad + \quad 
\sum_{k = n + 1}^{n+1} {n+1 \choose k} a^{n + 1- k}b^k \quad + \quad 
\sum_{k = 1} ^ {n} {n+1 \choose k} a ^ {n + 1 - k} b ^ k=
\sum_{k=0}^{n+1} {{n+1} \choose k } a ^ {n+1-k} b ^ {k}

Что и требовалось доказать

Комментарий:

 {n \choose k} + {n \choose k - 1} = {n + 1 \choose k}  — одно из тождеств биномиальных коэффициентов

Для ненатуральных степеней

(1+x)^r=\sum_{k=0}^{\infty} {r \choose k} x^k

где r может быть комплексным числом (в частности, отрицательным или вещественным). Коэффициенты находятся по формуле:

{r \choose k}={1 \over k!}\prod_{n=0}^{k-1}(r-n)=\frac{r(r-1)(r-2)\cdots(r-(k-1))}{k!}\,

При этом ряд

(1+z)^\alpha=1+\alpha{}z+\frac{\alpha(\alpha-1)}{2}z^2+...+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^n+....

сходится при |z|\le 1.

В частности, при z=\frac{1}{m} и \alpha=x\cdot m получается тождество

\left(1+\frac{1}{m}\right)^{xm}=1+x+\frac{xm(xm-1)}{2\; m^2}+...+\frac{xm(xm-1)\cdots(xm-n+1)}{n!\; m^n}+\dots.

Переходя к пределу при m\to\infty и используя второй замечательный предел \lim_{m\to\infty}{\left(1+\frac{1}{m}\right)^{m}}=e, выводим тождество

e^x=1+x+\frac{x^2}{2}+\dots+\frac{x^n}{n!}+\dots,

именно таким образом впервые полученное Эйлером.

История

Считается, что эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль, описавший её в XVII веке. Тем не менее, она была известна ещё китайскому математику Яну Хуэю, жившему в XIII веке. Возможно, её открыл персидский учёный, поэт и философ Омар Хайям.

Исаак Ньютон обобщил формулу для прочих показателей степени.

В художественной литературе

В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном.

  • В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти:
«Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая будущность».

Об этой специфической роли бинома Ньютона в культуре писал известный математик В. А. Успенский [1].

См. также



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Ньютона бином" в других словарях:

  • НЬЮТОНА БИНОМ — формула, выражающая целую положительную степень суммы двух слагаемых (двучлена, бинома) через степени этих слагаемых (коэффициенты при них называются биномиальными коэффициентами; их обозначают или : Частными случаями бинома Ньютона при n=2 и n=3 …   Большой Энциклопедический словарь

  • Ньютона бином — НЬЮТОНА БИНОМ, формула, выражающая целую положительную степень суммы двух слагаемых (бинома) через степени этих слагаемых: . Частные случаи Ньютона бинома: квадрат (n = 2) и куб (n = 3) суммы двух слагаемых.   …   Иллюстрированный энциклопедический словарь

  • Ньютона бином — формула, выражающая целую положительную степень суммы двух слагаемых (двучлена, бинома) через степени этих слагаемых (коэффициенты при них называются биномиальными коэффициентами; их обозначают ): Частными случаями бинома Ньютона при n = 2 и… …   Энциклопедический словарь

  • Ньютона бином —         название формулы, выражающей любую целую положительную степень суммы двух слагаемых (бинома, двучлена) через степени этих слагаемых, а именно:                  (1)          (1) где n целое положительное число, а и b какие угодно числа.… …   Большая советская энциклопедия

  • НЬЮТОНА БИНОМ — название формулы, позволяющей выписывать разложение алгебраической суммы двух слагаемых произвольной степени. Впервые была предложена Ньютоном в 1664 1665: Коэффициенты формулы называются биномиальными коэффициентами. Если n положительное целое… …   Энциклопедия Кольера

  • НЬЮТОНА БИНОМ — формула разложения произвольной натуральной степени двучлена в многочлен, расположенный по степеням одного из слагаемых двучлена: где биномиальные коэффициенты. Для пслагаемых формула (*) принимает вид При произвольном показателе т,… …   Математическая энциклопедия

  • НЬЮТОНА БИНОМ — ф ла, выражающая целую положит. степень суммы двух слагаемых (двучлена, бинома) через степени этих слагаемых; Частными случаями Н. б. при п = 2 и п = 3 являются ф лы квадрата и куба суммы двух слагаемых х и у …   Большой энциклопедический политехнический словарь

  • БИНОМ — (от би... и лат. nomen имя) то же, что двучлен. О биноме вида (x+y)n см. в ст. Ньютона бином …   Большой Энциклопедический словарь

  • бином — а; м. [от лат. bis дважды и греч. nomē часть, доля] Матем. Алгебраическое выражение, представляющее сумму или разность двух одночленов; двучлен. * * * бином (от би... и лат. nomen  имя), то же, что двучлен. О биноме вида (х + y)n см. Ньютона… …   Энциклопедический словарь

  • Бином — (от би (См. Би...)... и лат. nomen имя)         двучлен, сумма или разность двух алгебраических выражений, называемых членами Б.; например          a + b, и т.д.          О степенях Б., то есть выражениях вида (х + у) n, см. Ньютона бином …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»