гомоморфизм модулей

гомоморфизм модулей
мат. homomorphism of modules, module homomorphism

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "гомоморфизм модулей" в других словарях:

  • Тензорное произведение — операция над линейными пространствами, а также над элементами (векторами, матрицами, операторами, тензорами и т.д.) перемножаемых пространств. Тензорное произведение линейных пространств и есть линейное пространство, обозначаемое . Для элементов… …   Википедия

  • Индефинитное произведение — Тензорное произведение  одно из основных понятий линейной алгебры. Содержание 1 Тензорное произведение модулей 2 Свойства …   Википедия

  • Умножение двухэлементного тензора — Тензорное произведение  одно из основных понятий линейной алгебры. Содержание 1 Тензорное произведение модулей 2 Свойства …   Википедия

  • Теоремы об изоморфизме — Запрос «Теорема об изоморфизме» перенаправляется сюда; см. также другие значения. Первая теорема об изоморфизме Т …   Википедия

  • ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАТОР — обобщение оператора дифференцирования. Д. о. (вообще говоря, не непрерывный, не ограниченный и не линейный) оператор, определенный нек рым дифференциальным выражением и действующий в пространствах (вообще говоря, векторнозначных) функций (или… …   Математическая энциклопедия

  • МОДУЛЬ — абелева группа с кольцом операторов. М. является обобщением (линейного) векторного пространства над полем Кдля случая, когда Кзаменяется нек рым кольцом. Пусть задано кольцо А. Аддитивная абелева группа Мназ. левым А модулем, если определено… …   Математическая энциклопедия

  • КЮННЕТА ФОРМУЛА — формула, выражающая гомологии (или когомологии) тензорного произведения комплексов или прямого произведения пространств через гомологии (когомологии) сомножителей. Пусть ассоциативное кольцо с единицей, Аи С цепные комплексы соответственно правых …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛОВ МОДУЛЬ — модуль Кэлеровых дифференциалов, алгебраический аналог понятия дифференциала функции. Пусть А коммутативное кольцо, рассматриваемое как алгебра над своим подкольцом В. Д. м. В алгебры А определяется как фактормодульхW1A/B. свободного A модуля с… …   Математическая энциклопедия

  • ИНЪЕКТИВНЫЙ МОДУЛЬ — инъективный объект в категории модулей над кольцом R, т. е. такой R модуль Енад ассоциативным кольцом R с единицей, что для любых R модулей М, N, для любого мономорфизма i: и для любого гомоморфизма f: найдется такой гомоморфизм g: что диаграмма… …   Математическая энциклопедия

  • ПУЧКОВ ТЕОРИЯ — специальный математич. аппарат, обеспечивающий единый подход для установления связи между локальными и глобальными свойствами топологич. пространств (в частности, геометрич. объектов) и являющийся мощным средством исследования многих задач в… …   Математическая энциклопедия

  • ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ — 1) Т …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»