ПОЛУПРОСТОЙ ЭНДОМОРФИЗМ

ПОЛУПРОСТОЙ ЭНДОМОРФИЗМ

полупростое линейное преобразование, векторного пространства Vнад полем К - эндоморфизм a пространства Vтакой, что всякое подпространство в V, инвариантное относительно a, обладает инвариантным прямым дополнением. Другими словами, требуется, чтобы a. определял на Vструктуру полупростого модуля над кольцом К[X]. Напр., любое ортогональное, симметрическое или кососимметрическое линейное преобразование конечномерного евклидова пространства, а также любое диагонализируемое (т. е. записывающееся в нек-ром базисе диагональной матрицей) линейное преобразование конечномерного векторного пространства являются П. э. Полупростота эндоморфизма сохраняется при переходе к инвариантному подпространству и к факторпространству V/W. Пусть dim . Эндоморфизм является П. э. тогда и только тогда, когда его минимальный многочлен не имеет кратных множителей. Пусть, кроме того, L - расширение поля Ки - продолжение эндоморфизма a на пространство . Если a(L) полупрост, то и а полупрост, а если Lceпapaбельно над К, то верно и обратное. Эндоморфизм а наз. абсолютно полу простым, если a(L) полупрост для любого расширения ; для этого необходимо и достаточно, чтобы минимальный многочлен не имел кратных корней в алгебраич. замыкании поля К, т. е. чтобы эндоморфизм был диагонализируем.

Лит.:[1] Бурбаки Н., Алгебра. Модули, кольца, формы, пер. с франц., М., 1966. А. Л. Онищик.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "ПОЛУПРОСТОЙ ЭНДОМОРФИЗМ" в других словарях:

  • ПОЛУПРОСТОЙ ЭЛЕМЕНТ — линейной алгебраической группы G элемен т , где V конечномерное векторное пространство над алгебраически замкнутым полем К, являющийся полупростым эндоморфизмом пространства V. Понятие П. э. не зависит от реализации группы Gв виде линейной группы …   Математическая энциклопедия

  • ЖОРДАНА РАЗЛОЖЕНИЕ — 1) Ж. р. функции ограниченной вариации представление функции f в виде где f1 и f2 монотонно возрастающие функции. Ж. р. наз. также представление обобщенной меры, или зарядаm(Е)измеримого множества Ев виде разности мер где хотя бы одна из мерm+… …   Математическая энциклопедия

  • РЕПЛИКА — э н д о м о р ф и з м а Xконечномерного векторного пространства Vнад полем kхарактеристики 0 элемент наименьшей, содержащей X, алгебраич. подалгебры (см. Ли алгебраическая алгебра). Эндоморфизм является Р. эндоморфизма Xтогда и только тогда,… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»