Переменные и постоянные величины это:

Переменные и постоянные величины
        величины, которые в изучаемом вопросе принимают различные значения либо, соответственно, сохраняют одно и то же значение. Например, при изучении падения тела расстояние последнего от земли и скорость падения — переменные величины, ускорение же (если пренебречь сопротивлением воздуха) — величина постоянная. Элементарная математика рассматривала все изучаемые ею величины как постоянные. Понятие переменной величины возникло в математике в 17 в. под влиянием запросов естествознания, выдвинувшего на первый план изучение движения — процессов, а не только состояний. Это понятие не укладывалось в формы, выработанные математикой древности и средних веков, и требовало для своего выражения новых форм. Такими новыми формами явились буквенная алгебра и аналитическая геометрия Р. Декарта. В буквах декартовой алгебры, могущих принимать произвольные числовые значения, и нашли своё символическое выражение переменные величины. «Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление...» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 573). В этот период и вплоть до середины 19 в. преобладают механические воззрения на переменные величины. Наиболее ярко они были выражены И. Ньютоном, называвшим переменные величины «флюэнтами», то есть текущими, и рассматривавшим их «... не как состоящие из крайне малых частей, но как описываемые непрерывным движением» («Математические работы», М., 1937, с. 167). Эти воззрения оказались весьма плодотворными и, в частности, позволили Ньютону совершенно по-новому подойти к нахождению площадей криволинейных фигур. Ньютон впервые стал рассматривать площадь криволинейной трапеции (ABNM на рис.) не как постоянную величину (вычисляемую суммированием составляющих её бесконечно малых частей), а как переменную величину, производимую движением ординаты кривой (NM); установив, что скорость изменения рассматриваемой площади пропорциональна ординате NM, он тем самым свёл задачу вычисления площадей к задаче определения переменной величины по известной скорости её изменения. Законность внесения в математику понятия скорости была обоснована в начале 19 в. теорией Пределов, давшей точное определение скорости как производной (См. Производная). Однако в течение 19 в. постепенно выясняется ограниченность описанного выше воззрения на переменные величины. Математический анализ всё больше становится общей теорией функций, развитие которой невозможно без точного анализа сущности и объёма её основных понятий. При этом оказывается, что уже понятие непрерывной функции в действительности значительно сложнее, чем приведшие к нему наглядные представления. Открываются непрерывные функции, не имеющие производной ни в одной точке; понимать такую функцию как результат движения означало бы допускать движение, не имеющее скорости ни в какой момент. Всё большее значение приобретает изучение разрывных функций, а также функций, заданных на множествах значительно более сложной структуры, чем интервал или объединение нескольких интервалов. Ньютоновское толкование переменной величины становится недостаточным, а во многих случаях и бесполезным.
         С другой стороны, математика начинает рассматривать как переменные не только величины, но и всё более разнообразные и широкие классы других своих объектов. На этой почве во 2-й половине 19 в. и в 20 в. развиваются теория множеств, топология и математическая логика. О том, насколько расширилось в 20 в. понятие переменной величины, свидетельствует тот факт, что в математической логике рассматриваются не только переменные, пробегающие произвольные множества предметов, но и переменные, значениями которых служат высказывания, предикаты (отношения между предметами) и т.д. (см. Переменная).
        Рис. к ст. Переменные и постоянные величины.
        Рис. к ст. Переменные и постоянные величины.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Переменные и постоянные величины" в других словарях:

  • ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ — в математике величины, которые в изучаемом вопросе принимают различные значения или сохраняют одно и то же значение. Различие между переменной и постоянной величинами относительно: величина, постоянная в некотором вопросе, может быть переменной в …   Большой Энциклопедический словарь

  • переменные и постоянные величины — (матем.), величины, которые в изучаемом вопросе принимают различные значения или сохраняют одно и то же значение. Различие между переменной и постоянной величинами относительно: величина, постоянная в некотором вопросе, может быть переменной в… …   Энциклопедический словарь

  • ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ — см. Константа, Переменная. Философская Энциклопедия. В 5 х т. М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960 1970 …   Философская энциклопедия

  • ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ — (матем.), величины, к рые в изучаемом нопросс принимают разл. значения или сохраняют одно и то же значение. Различие между переменной и постоянной величинами относительно: величина, постоянная в нек ром вопросе, может быть переменной в другом …   Естествознание. Энциклопедический словарь

  • Переменные звёзды — I Переменные звёзды          П. з. звезды, видимый блеск которых подвержен колебаниям. Многие П. з. являются нестационарными звездами; переменность блеска таких звезд связана с изменением их температуры и радиуса, истечением вещества,… …   Большая советская энциклопедия

  • Переменные звёзды — I Переменные звёзды          П. з. звезды, видимый блеск которых подвержен колебаниям. Многие П. з. являются нестационарными звездами; переменность блеска таких звезд связана с изменением их температуры и радиуса, истечением вещества,… …   Большая советская энциклопедия

  • Газы сжиженные и в критическом состоянии — Во времена Лавуазье (см. это имя) переход Г. в жидкое и твердое состояние казался весьма вероятным, так как при химических реакциях часто совершается подобная перемена физического состояния ( Oeuvres de Lavoisier , т. II 804). В начале XIX… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ГОСТ Р 52002-2003: Электротехника. Термины и определения основных понятий — Терминология ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа: 128 (идеальный электрический) ключ Элемент электрической цепи, электрическое сопротивление которого принимает нулевое либо бесконечно… …   Словарь-справочник терминов нормативно-технической документации

  • постоянная величина — см. Переменные и постоянные величины, Константа. * * * ПОСТОЯННАЯ ВЕЛИЧИНА ПОСТОЯННАЯ ВЕЛИЧИНА, см. Переменные и постоянные величины (см. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ), Константа (см. КОНСТАНТА) …   Энциклопедический словарь

  • Математика —          I. Определение предмета математики, связь с другими науками и техникой.          Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира.          «Чистая …   Большая советская энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»