Производная это:

Производная
        основное понятие дифференциального исчисления, характеризующее скорость изменения функции; П. есть функция, определяемая для каждого х как предел отношения:
         Всякая дифференцируемая функция непрерывна; обратное утверждение неверно: существуют даже непрерывные функции, не имеющие П. ни в одной точке (см. Непрерывная функция). Для функций действительного переменного сама П. может быть недифференцируемой и даже разрывной. В комплексной же области существование первой П. влечёт существование П. всех порядков. О П. функций многих переменных (частная П.), а также о правилах нахождения П. и различных приложениях см. в ст. Дифференциальное исчисление.
         В теории функций действительного переменного изучаются, в частности, функциональные свойства П. и различные обобщения понятия «П.». Так, например, всюду существующая П. относится к функциям первого класса по Бэра классификации (См. Бэра классификация); П. (даже если она разрывна) принимает все промежуточные значения между наименьшим и наибольшим. Из различных обобщений понятия «П.» наиболее существенны следующие.
         Производные числа. Верхним правым производным числом Δd называют верхний предел отношения , где x1 > х. Аналогично определяют нижнее правое λd, верхнее Δs и нижнее λs левые производные числа. Если Δd = λd (Δ = λs), то f (x) имеет в точке х одностороннюю правую (левую) П. Обыкновенная П. существует, если все четыре производных числа конечны и совпадают. Производные числа были введены итал. математиком У. Дини (1878). Как показал Н. Н. Лузин (1915), если все четыре производных числа конечны на некотором множестве, то функция имеет обычную П. всюду на этом множестве, кроме точек множества меры нуль (см. Мера множества).
         Асимптотическая (или аппроксимативная) производная была введена А. Я. Хинчиным (1916). Асимптотической П. называется предел отношения x1x пробегая точки множества, для которого х является плотности точкой (См. Плотности точка).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Производная" в других словарях:

  • ПРОИЗВОДНАЯ — (derivative) Темп приращения значения функции при приращении ее аргумента в какой либо точке, если сама функция в этой точке определена. На графике первая производная функции показывает угол ее наклона. Если у=f(x), ее первая производная в точке… …   Экономический словарь

  • ПРОИЗВОДНАЯ — ПРОИЗВОДНАЯ, скорость изменения величины математической функции относительно изменений независимой переменной. Производная является выражением одномоментного изменения значения функции f(x) в точке х и определяется соотношением [f(x+h) f(x)]/h с… …   Научно-технический энциклопедический словарь

  • производная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] производная Для функции от одной переменной f(x) — производная df/dx — это скорость ее изменения, т …   Справочник технического переводчика

  • Производная — [derivative]. Для функции от одной переменной  f(x)   производная df/dx это скорость ее изменения, т.е. Необходимы различные обобщения этого понятия на более сложные функции. Например, если рассматривается функция многих переменных f (x1, … …   Экономико-математический словарь

  • ПРОИЗВОДНАЯ — ПРОИЗВОДНАЯ, одно из основных понятий дифференциального исчисления …   Современная энциклопедия

  • ПРОИЗВОДНАЯ — в математике см. Дифференциальное исчисление …   Большой Энциклопедический словарь

  • производная — ПРОИЗВОДНЫЙ, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Производная — ПРОИЗВОДНАЯ, одно из основных понятий дифференциального исчисления.   …   Иллюстрированный энциклопедический словарь

  • Производная — ( ый, ое)  произведённая, образованная от другой, простейшей или основной величины, формы, категории[1]. Содержание 1 Математика 2 Нематематические понятия …   Википедия

  • ПРОИЗВОДНАЯ — одно из основных понятий математич. анализа. Пусть действительная функция f(x) действительного переменного хопределена в нек рой окрестности точки х 0 и существует конечный или бесконечный предел (*) Этот предел и наз. производной от функции f(х) …   Математическая энциклопедия

  • производная — ой; ж. Матем. Основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Скорость тела производная от пути по времени. * * * производная в математике, см. Дифференциальное исчисление. * * * ПРОИЗВОДНАЯ ПРОИЗВОДНАЯ… …   Энциклопедический словарь

Книги

Другие книги по запросу «Производная» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»