Переменная это:

Переменная
        переменное, одно из основных понятий математики и логики. Начиная с работ П. Ферма, Р. Декарта, И. Ньютона, Г. В. Лейбница и др. основоположников «высшей» математики под П. понимали некоторую «величину», которая может «изменяться», принимая в процессе этого изменения различные «значения». Тем самым П. противопоставлялись «постоянным» (или константам) — числам или каким-либо др. «величинам», каждая из которых имеет единственное, вполне определённое значение (см. Переменные и постоянные величины). По мере развития математики и в ходе её обоснования представления о «процессах», «изменении величин» и т. п. тщательно изгонялись из математического арсенала как «внематематические», в результате чего П. стала пониматься как обозначение для произвольного элемента рассматриваемой предметной области (например, области натуральных чисел или действительных чисел), то есть как родовое имя всей этой области (в отличие от констант — «собственных имён» для чисел или др. конкретных предметов рассматриваемой области). Этот пересмотр взглядов на понятие П. был тесно связан с перестройкой математики на базе множеств теории (См. Множеств теория), завершившейся в конце 19 в. При всей простоте и «естественности» такой перестройки она существенным образом опирается на так называемую абстракцию актуальной бесконечности, позволяющую рассматривать произвольные бесконечные множества в качестве «данных» («завершенных», «готовых», «актуальных») объектов и применять по отношению к ним любые средства классической логики, отвлекаясь от незавершённости и принципиальной незавершимости процесса образования такого множества. Трудности решения логических проблем, связанных с принятием этой абстракции, делают понятной частичную «реабилитацию» старинных представлений о «переменных величинах»; при построении математических теорий представители некоторых школ (см. Математический интуиционизм, Конструктивное направление) предпочитают обходиться боле (слабой, но зато менее уязвимой в логическом отношении абстракцией потенциальной осуществимости, с точки зрения которой с бесконечными множествами как раз связываются представления о процессах их «порождения»,— сколь угодно далеко заходящих, но никогда не завершающихся (см. Бесконечность в математике). При исследовании вопроса непротиворечивости (См. Непротиворечивость) различных областей математики на такую позицию фактически встаёт значительное большинство математиков и логиков (см. Метаматематика).
         В формализованных языках (исчислениях (См. Исчисление), формальных системах) математической логики П. называются символы строго фиксированного вида, могущие при определённых условиях заменяться выражениям данного исчисления. Это относится к так называемым свободным (или значащим) П. примером которых может служить П. в неравенстве х > 5, обращающемся при подстановке вместо х, скажем, цифры 7 (то есть обозначения для числа) 7 в истинное высказывание, а при подстановке цифры 2 — в ложное высказывание. Что касается так называемых связанных (или фиктивных) П., то они сами по себе вообще ничего не означают, несут чисто синтаксические функции и могут (при соблюдении некоторых элементарных предосторожностей) «переименовываться», то есть заменяться др. П. Такова, например, П. у в записях yP (y), в интерпретации (прочтения) которых она вообще не входит и может быть заменена любой др. П. так, первая из них (читаемая как «сумма целых чисел от 5 до 25») может быть заменена на tP (t). Различают индивидные, пропозициональные, предикатные, функциональные, числовые и др. виды П., вместо которых можно (согласно специальным правилам подстановки) подставлять соответственно обозначения предметов из рассматриваемой области («термы»), обозначения для конкретных высказываний, предикатов, функций, чисел и др. Т. о., П. можно содержательно понимать как «пустое место» в формуле, снабженное указанием, чем это «место» может быть «заполнено» (своего рода «тара под строго определенный товар»).
         Свободные вхождения П. в выражения содержательных научных теорий и формулы логико-математических исчислений (соответствующие употреблению неопределенных местоимений в обычной речи) допускают различные интерпретации. Первая (соответствующая применению всякого рода процедур подстановок) — так называемая предикатная интерпретация: формула A (x1,..., xn) какого-либо исчисления понимается как некоторый местный Предикат. Та же формула может интерпретироваться и как предложение (Высказывание), а именно как предложение ∀x1xn A (x1 … xn), являющееся ее «замыканием»,— это так называемая интерпретация всеобщности (употребительная, например, при формулировке аксиом (См. Аксиома) различных научных теорий). Свободным П. могут, наконец, приписываться значения, постоянные в пределах некоторого контекста (например, вывода из данной совокупности формул), их тогда называют параметрами этого контекста и говорят об их условной интерпретации. Например, П. х в выражении cos х, взятом изолированно, имеет предикатную интерпретацию, в тождестве sin2x + cos2x = 1 — интерпретацию всеобщности, в уравнении cos х = 1 (в процессе его решения, когда эта П. именуется «неизвестным») — условную интерпретацию.
         Таким образом, на различных уровнях формализации понятие П. выступает как уточнение средств, общеупотребительных в обычных разговорных языках (неопределенные местоимения, неопределенные артикли), и различных способов использования этих средств.
        
         Лит.: Клини С. К, Введение в метаматематику, пер с англ, М., 1957, §§ 31, 32, 45, Чёрч А, Введение в математическую логику, пер с англ, т. 1, М., 1960, §§ 02, 04, 06.
        

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Смотреть что такое "Переменная" в других словарях:

  • ПЕРЕМЕННАЯ — • ПЕРЕМЕННАЯ, в математике символ, используемый для представления величины, которая может принимать любое из ряда значений. Например, в выражении у=х2+х+1 величине х может быть присвоено в качестве значения любое действительное число. Здесь х… …   Научно-технический энциклопедический словарь

  • Переменная — в языках программирования именованная часть памяти, в которую могут помещаться разные значения переменной. Причем в каждый момент времени переменная имеет единственное значение. В процессе выполнения программы значение переменной может изменяться …   Финансовый словарь

  • переменная — аргумент Словарь русских синонимов. переменная сущ., кол во синонимов: 1 • аргумент (12) Словарь синонимов ASIS. В.Н. Тришин …   Словарь синонимов

  • переменная — одно из основных понятий для описания эксперимента, хотя оно может относиться и к наблюдению. Под переменной понимается любая реальность, коя может изменяться в экспериментальной ситуации. Переменные все измеряемые факторы, кои предположительно… …   Большая психологическая энциклопедия

  • ПЕРЕМЕННАЯ — в логике неопределенное имя предмета из некоторой выделенной предметной области области значений этой переменной …   Большой Энциклопедический словарь

  • ПЕРЕМЕННАЯ — англ. variable,;нем. Variable. 1. Знак в идеографических языках науки, к рый может принимать различные значения. 2. В математике величина, принимающая различные значения. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • ПЕРЕМЕННАЯ — (variable) Величина, способная изменяться. Переменные могут отражать цены, процентные ставки, уровни дохода, количества товаров и т.д. Экзогенные переменные – это такие переменные, причины изменения которых лежат за пределами рассматриваемой… …   Экономический словарь

  • переменная — Терм, который обозначает неконкретизированную сущность в проблемной области. [ГОСТ 34.320 96] Тематики базы данных EN variable …   Справочник технического переводчика

  • Переменная — * пераменная * argument .>> …   Генетика. Энциклопедический словарь

  • переменная — 3.3.15 переменная (variable): Представление значения, которое должно принадлежать к определенному типу данных. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Переменная — Термин переменная может означать: Переменная (программирование) поименованная, либо адресуемая иным способом область памяти, адрес которой можно использовать для осуществления доступа к данным. Переменная величина в математике символ,… …   Википедия

Книги

Другие книги по запросу «Переменная» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»