пространство простых идеалов
1ГЛОБАЛЬНО СИММЕТРИЧЕСКОЕ РИМАНОВО ПРОСТРАНСТВО — риманово многообразие М, каждая точка рк рого является изолированной неподвижной точкой нек рой ннволютивной нзометрии Sp многообразия М, т. е. есть тождественное преобразование. Пусть G компонента единицы группы изометрий пространства Ми К… …
2Топологическое пространство — У этого термина существуют и другие значения, см. Пространство. Топологическое пространство  основной объект изучения топологии (термин «топология» в его рамках  см. ниже). Исторически, понятие топологического пространства появилось как …
3КОЛЬЦА И АЛГЕБРЫ — множества с двумя бинарными операциями, к рые обычно принято наз. сложением и умножением. Кольцом наз. множество: 1) являющееся абелевой группой относительно сложения (в частности, в кольце существует нулевой элемент, обозначаемый 0, и… …
4Идеал (алгебра) — У этого термина существуют и другие значения, см. Идеал (значения). Идеал одно из основных понятий абстрактной алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других… …
5Топология Зарисского — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Топология Зарисского в алгебраической геометрии  специальная топология, отражающая алгебраическую при …
6ЛИ АЛГЕБРА — лиева алгебра, унитарный k модуль Lнад коммутативным кольцом k с единицей, к рый снабжен билинейным отображением прямого произведения в L, обладающим следующими двумя свойствами: 1) [ х, х] = 0 (откуда вытекает антикоммутативность 2) ( х,[ у,… …
7ЛОКАЛЬНОЕ СВОЙСТВО — в коммутативной алгебре свойство Ркоммутативного кольца Аили А модуля М, к рое верно для кольца А(модуля М).тогда и только тогда, когда аналогичное свойство выполняется для локализаций кольца А(модуля М).относительно всех простых идеалов кольца А …
8Замкнутая топология — Топологическое пространство основной объект изучения топологии (термин «топология» в его рамках см. ниже). Исторически, топологического пространства появилось как обобщение метрического пространства, в котором рассматриваются только свойства… …
9Открытая топология — Топологическое пространство основной объект изучения топологии (термин «топология» в его рамках см. ниже). Исторически, топологического пространства появилось как обобщение метрического пространства, в котором рассматриваются только свойства… …
10АФФИННАЯ СХЕМА — обобщение понятия аффинного многообразия, играющее роль локального объекта в теории схем. Пусть А коммутативное кольцо с единицей. Аффинная схема состоит из топо логич. пространства Spec Аи пучка колец на Spec A. При этом Spec Аесть множество… …