Задача о восьми ферзях

Задача о восьми ферзях
Задача о восьми ферзях.
Одно из решений: a7, b4, c2, d8, e6, f1, g3, h5:(87)

Задача о восьми ферзях — широко известная задача по расстановке фигур на шахматной доске. Исходная формулировка: «Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого».

Содержание

Формулировка

В более «математическом» виде задача может быть сформулирована несколькими способами, например, так: «Заполнить матрицу размером 8×8 нулями и единицами таким образом, чтобы сумма всех элементов матрицы была равна 8, при этом сумма элементов ни в одном столбце, строке или диагональном ряде матрицы не превышала единицы».

Конечная цель, поставленная перед решающим задачу, может формулироваться в нескольких вариантах:

  • Построить одно, любое решение задачи.
  • Аналитически доказать, что решение существует.
  • Определить количество решений.
  • Построить все возможные решения.
  • Одна из типовых задач по программированию алгоритмов перебора: создать компьютерную программу, находящую все возможные решения задачи.

Иногда постановка задачи требует нахождения способов расстановки N ферзей на доске N×N клеток (при этом при 1<N<4 задача не имеет решения).Подробно об этом изложено в украинской и английской версиях данной статьи в Википедии.


Мы же подробнее рассмотрим классический “шахматный” случай для доски 8*8.

Особенности решения

Общее число возможных расположений 8 ферзей на 64-клеточной доске равно 4426165368. Общее число возможных расположений, удовлетворяющих условию задачи равно 92. В принципе, современные компьютеры уже позволяют произвести решение задачи (нахождение любого или всех решений) путём прямого перебора всех возможных вариантов расстановки, но обычно такое решение считается некорректным, и от решающего задачу требуется найти алгоритм, который позволял бы существенно сократить объём перебора. Например, очевидно, что на одной горизонтали или вертикали доски не может находиться больше одного ферзя, поэтому алгоритм решения изначально не должен включать в перебор позиции, где два ферзя стоят на одной горизонтали или вертикали. Даже такое простое правило способно существенно уменьшить число возможных расположений: 16777216 (то есть 8^8) вместо 4426165368. Генерируя перестановки, которые являются решениями задачи о восьми ладьях и затем проверяя атаки по диагоналям, можно сократить число возможных расположений всего до 40320 (то есть 8!). Однако, если условие нападения по диагонали учитывать при генерации позиций, скорость счёта возрастает на порядок.

Один из типовых алгоритмов решения задачи — использование поиска с возвратом: первый ферзь ставится на первую горизонталь, затем каждый следующий пытаются поставить на следующую так, чтобы его не били ранее установленные ферзи. Если на очередном этапе постановки свободных полей не оказывается, происходит возврат на шаг назад — переставляется ранее установленный ферзь (такой алгоритм использован в опубликованных ниже программах).

Ниже приведена программа, реализующая этот алгоритм на QBasic-е.

 CLS
 DEFINT A-I
 OPEN "ferz" FOR OUTPUT AS #1
 FOR a = 1 TO 8
 FOR b = 1 TO 8
  IF b = a THEN 8
  IF ABS(b - a) = 1 THEN 8
   FOR c = 1 TO 8
 IF c = a OR c = b THEN 7
 IF ABS(c - b) = 1 OR ABS(c - a) = 2 THEN 7
 FOR d = 1 TO 8
 IF d = a OR d = b OR d = c THEN 6
 IF ABS(d - c) = 1 OR ABS(d - b) = 2 OR ABS(d - a) = 3 THEN 6
 FOR e = 1 TO 8
 IF e = a OR e = b OR e = c OR e = d THEN 5
  IF ABS(e - d) = 1 OR ABS(e - c) = 2 OR ABS(e - b) = 3 OR ABS(e - a) = 4 THEN 5
 FOR f = 1 TO 8
 IF f = a OR f = b OR f = c OR f = d OR f = e THEN 4
   IF ABS(f - e) = 1 OR ABS(f - d) = 2 OR ABS(f - c) = 3 OR ABS(f - b) = 4 >
 OR ABS(f - a) = 5 THEN 4
 FOR g = 1 TO 8
 IF g = a OR g = b OR g = c OR g = d OR g = e OR g = f THEN 3
  IF ABS(g - f) = 1 OR ABS(g - e) = 2 OR ABS(g - d) = 3 OR ABS(g - c) = 4  >
 OR ABS(g - b) = 5 OR ABS(g - a) = 6 THEN 3
 FOR h = 1 TO 8
 IF h = a OR h = b OR h = c OR h = d OR h = e OR h = f OR h = g THEN 2
 IF ABS(h-g) = 1 OR ABS(h-f) = 2 OR ABS(h-e) = 3 OR ABS(h-d) = 4 OR ABS(h-c) = 5     >
 OR ABS(h-b) = 6 OR ABS(h-a) = 7 THEN 2
 i = i + 1 
 PRINT i; " "; "a"; a; " "; "b"; b; " "; "c"; c; " "; "d"; d;
 PRINT " "; "e"; e; " "; "f"; f; " "; "g"; g; " "; "h"; h
 PRINT #1, i; " "; "a"; a; " "; "b"; b; " "; "c"; c; " "; "d";
 PRINT #1, d; " "; "e"; e; " "; "f"; f; " "; "g"; g; " "; "h"; h
 2 NEXT h
 3 NEXT g
 4 NEXT f
 5 NEXT e
 6 NEXT d
 7 NEXT c
 8 NEXT b
 NEXT a
 END



В этой группе при повороте на 180 градусов позиции переходят сами в себя. Характерной особенностью симметрических положений является пустой квадрат 4*4 в середине доски и пустые диагонали. Таким образом,имея 12 расположений — по одному из каждой группы, можно получить все остальные,что,впрочем,известно из шахматной литературы: (Е.Я.Гик:Шахматы и математика,Наука,Москва 1983). В списке крестиком отмечены позиции,которые выбраны в качестве базовых (т.е. тех,с которыми производятся преобразования симметрии) в английской и украинской версии данной статьи в Википедии и указаны номера, под которыми они в ней фигурируют. Здесь же базовые позиции (первые позиции в каждой группе) выбраны по признаку минимального номера в группе. Очевидно, что наборов базовых позиций можно составить (8^11)*4.

Вариант решения для доски произвольного размера на C#

Ниже приведен только класс, непосредственно реализующий алгоритм решения. (Полный код программы можно скачать по ссылке: http://adels.zp.ua/other/queens_cs.zip).

  class QueensProblem : IProblem {
    private int size;
    private int[] positions;
    private List<int[]> saved;
    private IProblemCallback cb;
 
    public void Init(int size, IProblemCallback cb) {
      this.size = size;
      this.cb = cb;
      positions = new int[size];
      saved = new List<int[]>();
    }
 
    private void Save() {
      saved.Add((int[]) positions.Clone());
    }
 
    private bool Step() {
      int s = size;
      for (int i = 1; i < s; i++) {
        int pos = positions[i];
        while (true) {
          bool found = false;
          for (int j = 0; j < i; j++) {
            int epos = positions[j];
            if (epos == pos || pos - i == epos - j || pos + i == epos + j) {
              if (++pos >= s) {
                if (!Next(i)) return false;
                while (++i < s) positions[i] = 0;
                return true;
              }
              positions[i] = pos;
              found = true;
              break;
            }
          }
          if (!found) break;
        }
      }
      Save();
      return Next(s - 1);
    }
 
    private bool Next(int pos) {
      int s = size;
      if (++positions[pos] < s) return true;
      do {
        positions[pos] = 0;
        if (++positions[--pos] < s) return true;
      } while (pos > 0);
      return false;
    }
 
    public int Solve() {
      float prev = 0;
      int sq = size * size;
      while (Step()) {
        int part = positions[0] * size + positions[1];
        if (part != prev) cb.Progress((float) (prev = part) / sq);
      }
      return saved.Count;
    }
 
    public List<int[]> GetResults() {
      return saved;
    }
 
    public int Size {
      get { return size; }
    }
 
  }

Время выполнения алгоритма

График зависимости времени от размера (экспоненциальный)

Ниже представлена зависимость времени выполнения программы от размера доски (время приведено для компьютера с процессором Intel Core2 Q6600 @ 2.4 ГГц):

Размер Решений Время (мс)
4 2 1
5 10 2
6 4 2
7 40 2
8 92 3
9 352 6
10 724 16
11 2 680 69
12 14 200 376
13 73 712 2 311
14 365 596 15 411
15 2 279 184 108 587
16 14 772 512 812 945

Характер зависимости времени выполнения от размера доски — экспоненциальный (как показано на графике).

Альтернативный подход

Если решать более общую задачу об N ферзях при помощи описанного выше алгоритма, то такой перебор вариантов даже с использованием описанных выше сокращений будет весьма долго работать уже при N = 20, так как 20! = 2.433·1018. Поэтому представляет особенный интерес следующий эвристический алгоритм, решающий задачу об N ферзях на поле размером N x N. Он работает для всех N ≥ 4 или N = 1:

  1. Разделить N на 12 и запомнить остаток (N будет равно 8 для задачи о восьми ферзях).
  2. Занести в список все четные числа от 2 до N по порядку.
  3. Если остаток равен 3 или 9, перенести 2 в конец списка.
  4. Добавить в список все нечетные числа от 1 до N по порядку, но, если остаток равен 8, перевернуть пары соседних чисел (например: 3, 1, 7, 5, 11, 9, …).
  5. Если остаток равен 2 и N ≥ 3, поменять местами 1 и 3, затем, если N ≥ 5, перенести 5 в конец списка.
  6. Если остаток равен 3 или 9, переместить 1 и 3 (именно в этом порядке, а не в котором они сейчас) в конец списка.
  7. Разместить ферзя в первом столбце и в строке с номером, равным первому элементу списка, затем поместить следующего ферзя во втором столбце и в строке с номером, равным второму элементу списка, и т.д.

Для N = 8 результат работы этого алгоритма показан на картинке.

Chess zhor 26.svg
Chess zver 26.svg
Chess l45.svg Chess d45.svg Chess l45.svg Chess qld45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg
Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess qld45.svg Chess l45.svg
Chess l45.svg Chess d45.svg Chess qll45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg
Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess qll45.svg
Chess l45.svg Chess qld45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg
Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess qld45.svg Chess l45.svg Chess d45.svg Chess l45.svg
Chess qll45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg
Chess d45.svg Chess l45.svg Chess d45.svg Chess l45.svg Chess d45.svg Chess qll45.svg Chess d45.svg Chess l45.svg
Chess zver 26.svg
Chess zhor 26.svg
Решение, полученное с помощью эвристики.(5)

Еще несколько примеров:

  • 14 ферзей (остаток 2): 2, 4, 6, 8, 10, 12, 14, 3, 1, 7, 9, 11, 13, 5.
  • 15 ферзей (остаток 3): 4, 6, 8, 10, 12, 14, 2, 5, 7, 9, 11, 13, 15, 1, 3.
  • 20 ферзей (остаток 8): 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 1, 7, 5, 11, 9, 15, 13, 19, 17.

Реализация на C++

#include <iostream>
#include <vector>
#include <algorithm>
 
int main()
{
        int N, Mod;
        std::vector < int > L;
 
        std::cin >> N;
 
        Mod = N % 12;
 
        for ( int x = 2; x <= N; x += 2 )
                L.push_back( x );
 
        if ( Mod == 3 || Mod == 9 )
        {
                L.push_back( 2 );
                L.erase( L.begin() );
        }
 
        if ( Mod == 8 )
        {
                std::vector < int > V;
                for ( int x = 1; x <= N; x += 2 )
                        V.push_back( x );
                for ( int i = 1; i < V.size(); i += 2 )
                        std::swap( V.at( i ), V.at( i - 1 ) );
                for ( int i = 0; i < V.size(); ++i )
                        L.push_back( V.at( i ) );
        }
        else
                for ( int x = 1; x <= N; x += 2 )
                        L.push_back( x );
 
        if ( Mod == 2 && N >= 3 )
        {
                std::swap( *std::find( L.begin(), L.end(), 1 ), *std::find( L.begin(), L.end(), 3 ) );
                if ( N >= 5 )
                {
                        L.erase( std::find( L.begin(), L.end(), 5 ) );
                        L.push_back( 5 );
                }
        }
 
        if ( Mod == 3 || Mod == 9 )
        {
                L.erase( std::find( L.begin(), L.end(), 1 ) );
                L.push_back( 1 );
                L.erase( std::find( L.begin(), L.end(), 3 ) );
                L.push_back( 3 );
        }
 
        for ( int i = 0; i < L.size(); ++i )
                std::cout << L.at( i ) << " ";
 
        return 0;
}


Реализация на Haskell

position n = evenPosition ++ oddPosition where
  modN = n `mod` 12
  evenPosition
    | modN == 3 || modN == 9    = [4,6..n] ++ [2]
    | otherwise                 = [2,4..n]
  oddPosition = oneThree $ fiveSeven others where
    others
      | modN == 8       = swapPairs [9,11..n]
      | otherwise       = [9,11..n]
      where
        swapPairs []    = []
        swapPairs [x]   = [x]
        swapPairs (y:x:xs) = x:y:swapPairs xs   
    fiveSeven
      | modN == 2 && n >= 5     = ([7] ++) . (++ [5])
      | modN == 8               = ([7,5] ++)
      | n < 7                   = ([5,7..n] ++)
      | otherwise               = ([5,7] ++)
    oneThree
      | modN == 3 || modN == 9                  = (++ [1,3])
      | modN == 8 || (modN == 2 && n >= 3)      = ([3,1] ++)
      | n < 3                                   = ([1] ++)
      | otherwise                               = ([1,3] ++)
 
main = print $ map position [8,14,15,20]
-- [[2,4,6,8,3,1,7,5],
--  [2,4,6,8,10,12,14,3,1,7,9,11,13,5],
--  [4,6,8,10,12,14,2,5,7,9,11,13,15,1,3],
--  [2,4,6,8,10,12,14,16,18,20,3,1,7,5,11,9,15,13,19,17]]


Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Задача о восьми ферзях" в других словарях:

  • Математические задачи на шахматной доске — Математические задачи на шахматной доске. Шахматная доска с расположенными на ней фигурами и ходы фигур послужили удобной моделью, породившей ряд математических задач, в том числе и таких, которыми занимались известные математики. Наиболее… …   Википедия

  • Ферзь — …   Википедия

  • Ферзь (шахматы) — …   Википедия

  • Шахматы — У этого термина существуют и другие значения, см. Шахматы (значения). Шахматы шахматн …   Википедия

  • Фигура (шахматы) — Шахматы шахматные часы, шахматная доска, начальная расстановка шахматных фигур Количество игроков 2 Диапазон возрастов 5+ Время установки Обычно 10 60 секунд Длительность партии 10 секунд 7 часов * Сложность правил …   Википедия

  • Шахматы, игра — Шахматы шахматные часы, шахматная доска, начальная расстановка шахматных фигур Количество игроков 2 Диапазон возрастов 5+ Время установки Обычно 10 60 секунд Длительность партии 10 секунд 7 часов * Сложность правил …   Википедия

  • Шахматист — Шахматы шахматные часы, шахматная доска, начальная расстановка шахматных фигур Количество игроков 2 Диапазон возрастов 5+ Время установки Обычно 10 60 секунд Длительность партии 10 секунд 7 часов * Сложность правил …   Википедия

  • Шахматистка — Шахматы шахматные часы, шахматная доска, начальная расстановка шахматных фигур Количество игроков 2 Диапазон возрастов 5+ Время установки Обычно 10 60 секунд Длительность партии 10 секунд 7 часов * Сложность правил …   Википедия

  • Особые виды композиции — Особые виды композиции[1][2] область шахматной композиции, в которой используются специфические задания. Включает в себя: Ретроанализ Математические задачи Конструкционные задачи См. также Задача о восьми ферзях Задача о ходе коня Примечания …   Википедия

  • Поиск с возвратом — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»