Твёрдое тело

Твёрдое тело
Модель расположения атомов в кристалле твёрдого тела

Твёрдое тело — это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия[1].

Содержание

Описание

{{{box_caption}}}
{{{box_caption}}}
Схематическое изображение атомной структуры неупорядоченного аморфного (слева) и упорядоченного кристаллического (справа) твёрдого тела.

Различают кристаллические и аморфные твёрдые тела (см. дальний и ближний порядок). Кристаллы характеризуются пространственною периодичностью в расположении равновесных положений атомов. В аморфных телах атомы колеблются вокруг хаотически расположенных точек[1]. Согласно классическим представлениям, устойчивым состоянием (с минимумом потенциальной энергии) твёрдого тела является кристаллическое. Аморфное тело находится в метастабильном состоянии и с течением времени должно перейти в кристаллическое состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется.

  • Атомы и молекулы, составляющие твёрдое тело, плотно упакованы вместе. Другими словами, молекулы твёрдого тела практически сохраняют своё взаимное положение относительно других молекул[2] и удерживаются между собой межмолекулярным взаимодействием.
  • Многие твёрдые тела содержат в себе кристаллические структуры. В минералогии и кристаллографии под кристаллической структурой подразумевается определённый порядок атомов в кристалле. Кристаллическая структура состоит из элементарных ячеек, набора атомов расположенных в особенном порядке, который периодически повторяется во всех направлениях пространственной решётки. Расстояния между элементами этой решётки в различных направлениях называют параметром этой решётки. Кристаллическая структура и симметричность играют роль в определении множества свойств, таких как спайность кристалла, электронная зонная структура и оптические свойства.
    • При применении достаточной силы любое из этих свойств может быть нарушено, вызывая остаточную деформацию.
  • Твёрдые тела обладают тепловой энергией, следовательно их атомы совершают колебательное движение. Тем не менее это движение незначительно и не может наблюдаться или быть почувствованным при нормальных условиях.

Раздел физики, изучающий твёрдые тела называется физикой твёрдого тела (подраздел физики конденсированных сред), развитие которого стимулируется потребностями техники. В свою очередь, физика твёрдого тела разделилась на ряд областей, обособление которых происходит путём выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и других), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия и тому подобное), либо определенных свойств (механических, тепловых и так )[1].

Материаловедение главным образом рассматривает вопросы, связанные со свойствами твёрдых тел, такими как твёрдость, предел прочности, сопротивление материала нагрузкам, а также фазовые превращения. Это значительным образом совпадает с вопросами, изучаемыми физикой твёрдого тела. Химия твёрдого состояния перекрывает вопросы, рассматриваемые обоими этими разделами знаний, но особенно затрагивает вопросы синтезирования новых материалов.

Исследования свойств твердых тел объединились в большую область — физику твердого тела, развитие которой стимулируется потребностями техники. В свою очередь, физика твердого тела разделилась на ряд областей, обособление которых происходит путем выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и др.), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия и т. п.), либо определенных свойств (механических, тепловых и т. д.).

Легчайшим известным твёрдым материалом является аэрогель. Некоторые виды аэрогеля имеют плотность 1.9 мг/см³ или 1.9 кг/м³ (1/530 плотности воды).

Классификация твёрдых тел

Выделяют твёрдые тела с ионной, ковалентной, металлической и другими типами связи между атомами. Электрические и некоторые другие свойства твердых тел, в основном, определяются характером движения внешних электронов его атомов[1].

По виду зонной структуры твёрдые тела классифицируют на проводники, полупроводники и диэлектрики.

  • проводники — зона проводимости и валентная зона перекрываются, таким образом электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твердому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.
  • полупроводники — зоны не перекрываются и расстояние между ними составляет менее 4эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.
  • диэлектрики — зоны не перекрываются и расстояние между ними составляет более 4эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

По магнитным свойствам твёрдые тела делятся на диамагнетики, парамагнетики и тела с упорядоченной магнитной структурой[1].

Историческая справка

Несмотря на то, что твердые тела (металлы, минералы) исследовались давно, всестороннее изучение и систематизация информации об их свойствах началось с 17 века. Начиная с этого времени был открыт ряд эмпирических законов, которые описывали влияние на твердое тело механических сил, изменения температуры, света, электромагнитных полей и т. д. Были сформулированы:

Уже в первой половине 19 в. были сформулированы основные положения теории упругости, для которой характерно представление о твердое тело как о сплошной среде.

Целостное представление о кристаллической структуре твердых тел, как совокупности атомов, упорядоченное размещение которых в пространстве обеспечивается силами взаимодействия было сформировано Огюстом Браве в 1848 году, хотя первые идеи такого рода высказывались в трактатах Николасом Стено (англ. Nicolas Steno, дан. Niels Stensen) (1669), Рене-Жуст Аюи (Гаюи) (фр. René Just Haüy) (1784), Исааком Ньютоном в работе «Математические начала натуральной философии» (1686), в которой рассчитана скорость звука в цепочке упруго связанных частиц, Даниэлем Бернулли (1727), Огюстеном-Луи Коши (1830) и др.

Фазовые переходы

При повышении температуры твердые тела переходят в жидкое или газообразное состояние. Переход твердого тела в жидкость называется плавлением, а переход в газообразное состояние, минуя жидкое, — сублимацией. Переход к твердому телу (при понижении температуры) — кристаллизация, к аморфной фазе — стеклование.

Существуют также фазовые переходы между твердотельными фазами, при которых изменяется внутренняя структура твердых тел, становясь упорядоченной при понижении температуры.

Физические свойства

Под физическими свойствами твердых тел понимается их специфическое поведение при воздействии определенных сил и полей. Существует три основных способа воздействия на твердые тела, соответствующие трем основным видам энергии: механический, термический и электромагнитный. Соответственно выделяют три основные группы физических свойств.

Механические свойства связывают механические напряжения и деформации тела, согласно результатам широких исследований механических и реологических свойств твердых тел, выполненных школой академика П. А. Ребиндера, можно разделить на упругие, прочностные, реологические и технологические. Кроме того, при воздействии на твердые тела жидкостей или газов оказываются их гидравлические и газодинамические свойства.

К термическим относят свойства, которые оказываются под воздействием тепловых полей. В электромагнитные свойства условно можно отнести радиационные, проявляющиеся при воздействии на твердое тело потоков микрочастиц или электромагнитных волн значительной жесткости (рентгеновских, гамма-лучи).

Механические свойства

В покое твёрдые тела сохраняю форму, но деформируются под воздействием внешних сил. В зависимости от величины приложенной силы деформация может быть упругой, пластической или разрушительной. При упругой деформации тело возвращает себе первоначальную форму после снятия приложенных сил. Отзыв твердого тела на прилагаемое усилие описывается модулями упругости. Отличительной особенностью твердого тела по сравнению с жидкостями и газами является то, что оно сопротивляется не только растяжении и сжатию, а также сдвигу, изгибу и кручению.

При пластической деформации начальная форма не сохраняется. Характер деформации зависит также от времени, в течение которого действует внешняя сила. Твердое тело может деформироваться упруго при мгновенном действии, но пластически, если внешние силы действуют длительное время. Такое поведение называется ползучестью. Одной из характеристик деформации является твердость тела — способность сопротивляться проникновению в него других тел.

Каждое твердое тело имеет присущий ему порог деформации, после которой наступает разрушение. Свойство твердого тела сопротивляться разрушению характеризуется прочностью. При разрушении в твердом теле появляются и распространяются трещины, которые в конце концов приводят к разлому.

К механическим свойствам твердого тела принадлежит также его способность проводить звук, который является волной, переносящий локальную деформацию с одного места в другое. В отличие от жидкостей и газов в твердом теле могут распространяться не только продольные звуковые волны, но и поперечные, что связано с сопротивлением твердого тела деформации сдвига. Скорость звука в твердых телах в целом выше, чем в газах, в частности в воздухе, поскольку межатомное взаимодействие гораздо сильнее. Скорость звука в кристаллических твердых телах характеризуется анизотропией, то есть зависимости от направления распространения.

Тепловые свойства

Важнейшим тепловым свойством твердого тела является температура плавления — температура, при которой происходит переход в жидкое состояние. Другой важной характеристикой плавления является скрытая теплота плавления. В отличие от кристаллов, в аморфных твердых тел переход до жидкого состояния с повышением температуры происходит постепенно. Его характеризуют температурой стеклования — температурой, выше которой материал почти полностью теряет упругость и становится очень пластичным.

Изменение температуры вызывает деформацию твердого тела, в основном повышение температуры приводит к расширению. Количественно она характеризуется коэффициентом теплового расширения. Теплоемкость твердого тела зависит от температуры, особенно при низких температурах, однако в области комнатных температур и выше, множество твердых тел имеют примерно постоянную теплоемкость (закон Дюлонга — Пти). Переход к устойчивой зависимости теплоемкости от температуры происходит при характерной для каждого материала температуре Дебая. От температуры зависят также другие характеристики твердотельных материалов, в частности механические: пластичность, текучесть, прочность, твердость.

Электрические и магнитные свойства

В зависимости от величины удельного сопротивления твердые тела разделяются на проводники и диэлектрики, промежуточное положение между которыми занимают полупроводники. Полупроводники имеют малую электропроводность, однако для них характерно ее рост с температурой. Электрические свойства твердых тел связаны с их электронной структурой. Для диэлектриков свойственна щель в энергетическом спектре электронов, которую в случае кристаллических твердых тел называют запрещенной зоной. Это область значений энергии, которую электроны в твердом теле не могут иметь. В диэлектриках все электронные состояния, ниже щели заполнены, и благодаря принципу Паули электроны не могут переходить из одного состояния в другое, чем обусловлено ​​отсутствие проводимости. Проводимость полупроводников очень сильно зависит от примесей — акцепторов и доноров.

Существует определенный класс твердых тел, для которых характерна ионная проводимость. Эти материалы называют супериониками. В основном это ионные кристаллы, в которых ионы одного сорта могут достаточно свободно двигаться между незыблемой решеткой ионов другого сорта.

При низких температурах для некоторых твердых тел свойственна сверхпроводимость — способность проводить электрический ток без сопротивления.

Существует класс твердых тел, которые могут иметь спонтанную поляризацию — пироэлектрики. Если это свойство характерно только для одной из фаз, что существует в определенном промежутке температур, то такие материалы называются сегнетоэлектриками. Для пьезоэлектриков характерена сильная связь между поляризацией и механической деформацией.

Ферромагнетикам свойственно существование спонтанного магнитного момента.

Оптические свойства твердых тел очень разнообразны. Металлы в основном имеют высокий коэффициент отражения света в видимой области спектра, много диэлектриков прозрачные, как, например, стекло. Часто цвет того или другого твердого тела обусловлен поглощающими свет примесями. Для полупроводников и диэлектриков характерна фотопроводимость — увеличение электропроводности при освещении.

Идеализации твердого тела в науках

Твердые тела, встречающиеся в природе, характеризуются бесконечным множеством разнообразных свойств, которая постоянно пополняются. В зависимости от поставленных перед определенной наукой задач важны лишь отдельные свойства твердого тела, другие — несущественные. Например, при исследовании прочности стали её магнитные свойства практически роли не играют.

Для простоты изучения реальное тело заменяют идеальным, выделяя лишь важнейшие свойства для рассматриваемого случая. Такой подход, практикуемый многими науками, называется абстрагированием. После выделения идеализированного тела с определенным перечнем существенных свойств, строится теория. Достоверность такой теории зависит от того насколько удачно принятая идеализация отражает существенные характеристики объекта. Оценку этому можно дать при сравнении результатов исследований, полученных теоретически на основе идеализированной модели и экспериментально.

В теоретической механике

В теоретической механике идеализированной схемой реального твердого тела является абсолютно твердое тело, то есть такое, в котором при любых обстоятельствах расстояния между любыми точками являются постоянными — не изменяются ни размеры, ни форма тела.

В теории упругости

В теории упругости и её прикладном применению сопромату также рассматриваются модели, которые учитывают и абсолютизируют отдельные свойства твердого тела. К этим свойствам Принятие условий однородности и сплошности при малых деформациях позволяет применить методы анализа бесконечно малых величин, что существенно упрощает построение теории сопротивления материалов.

Считается также, что зависимость между напряжениями и деформациями является линейной (см. Закон Гука).

В теории пластичности

В теории пластичности модели твердого тела основаны на идеализации свойств деформационного упрочнения или свойств текучести твердых тел в напряженно-деформированном состоянии.

В математике

В математике (геометрии) объектом рассмотрения является мнимое твердое тело, в котором сохраняются лишь форма и размеры при полном абстрагировании от всех других свойств. В отличие от реальных предметов геометрические тела, как и всякие геометрические фигуры, является мнимыми объектами.

См. также

Примечания

  1. 1 2 3 4 5 Стрелецкий Алексей Владимирович, Наймушина Дарья Анатольевна Твёрдое тело. РОСНАНО. Архивировано из первоисточника 31 мая 2012. Проверено 8 марта 2012.
  2. не учитывая температурные колебания, диффузию и т. п.

Литература

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "Твёрдое тело" в других словарях:

  • Твёрдое тело —         одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости (См. Жидкость), Газов, плазмы (См. Плазма)) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около… …   Большая советская энциклопедия

  • Сверхтвёрдое тело — Сверхтекучее твёрдое тело (англ. Supersolid)  термодинамическая фаза квантовой жидкости, представляющей собой твёрдое тело со свойствами сверхтекучей жидкости. Известно, что при охлаждении квантовой жидкости (конденсата Бозе  Эйнштейна) до… …   Википедия

  • ТВЁРДОЕ ТЕЛО — агрегатное состояние в ва, характеризующееся стабильностью формы и хар ром теплового движения атомов, к рые совершают малые колебания вокруг положений равновесия. Различают крист. и аморфные Т. т. Кристаллы характеризуются пространств.… …   Физическая энциклопедия

  • твёрдое тело — абсолютно твёрдое тело; твёрдое тело Материальное тело, в котором расстояние между двумя любыми точками всегда остаётся неизменным …   Политехнический терминологический толковый словарь

  • твёрдое тело — standusis kūnas statusas T sritis fizika atitikmenys: angl. rigid body vok. starrer Körper, m rus. жёсткое тело, n; твёрдое тело, n pranc. corps rigide, m …   Fizikos terminų žodynas

  • Твёрдое тело — Твердое тело ТВЁРДОЕ ТЕЛО, агрегатное состояние вещества, отличающееся стабильностью формы и характером теплового движения составляющих их атомов, которые совершают малые колебания около положений равновесия. Различают кристаллические и аморфные… …   Иллюстрированный энциклопедический словарь

  • твёрдое тело — kietasis kūnas statusas T sritis fizika atitikmenys: angl. solid; solid body vok. Festkörper, m rus. твёрдое тело, n pranc. corps solide, m …   Fizikos terminų žodynas

  • полутвёрдое тело — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN semisolid body …   Справочник технического переводчика

  • твёрдое тело — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN solid …   Справочник технического переводчика

  • ТВЁРДОЕ ТЕЛО — агрегатное состояние вещества (см.), отличающееся стабильностью формы и характером теплового движения атомов, которые совершают малые колебания вокруг положений равновесия. Т. т. в отличие от жидкости и газа обладает не только объёмной упругостью …   Большая политехническая энциклопедия

Книги

Другие книги по запросу «Твёрдое тело» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.