- Аксиомы и Теоремы Геометрии
-
Wikimedia Foundation. 2010.
Аксиомы и теоремы геометрии — … Википедия
ГЕОМЕТРИИ ОБЗОР — Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… … Энциклопедия Кольера
Пятая аксиома в евклидовой геометрии — Пересечения прямых (анимация) Аксиома параллельности Евклида, или пятый постулат одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида [1]: И если прямая, падающая на две прямые, образует внутренние и … Википедия
Планиметрия — (от лат. planum «плоскость», др. греч. μετρεω «измеряю») раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости. Первое… … Википедия
МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… … Философская энциклопедия
Геометрия — (греч. geometria, от ge Земля и metreo мерю) раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Происхождение термина «Г. , что… … Большая советская энциклопедия
НЕЕВКЛИДОВА ГЕОМЕТРИЯ — геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов… … Энциклопедия Кольера
N-мерная евклидова геометрия — N мерная евклидова геометрия обобщение евклидовой геометрии на пространство большего числа измерений. Хотя физическое пространство является трёхмерным[1], и человеческие органы чувств рассчитаны на восприятие трёх измерений[2], N мерная… … Википедия
НЕДЕЗАРГОВА ГЕОМЕТРИЯ — геометрия на плоскости, в к рой Дезарга предложение может не иметь места. В этом случае плоскость наз. недезарговой плоскостью. Теорема Дезарга не может быть доказана в плоскости на основе лишь проективных аксиом плоскости без привлечения аксиом… … Математическая энциклопедия
Недезаргова геометрия — проективная геометрия плоскости, в которой теорема Дезарга может не иметь места. В этом случае проективная плоскость называется недезарговой (проективной) плоскостью. Теорема Дезарга не может быть доказана в плоскости на основе лишь проективных… … Википедия