- Геометрическая оптика
-
Для улучшения этой статьи желательно?: - Добавить иллюстрации.
- Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.
Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.
В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.
Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.
Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.
Содержание
Законы геометрической оптики
В основе геометрической оптики лежат несколько простых эмпирических законов:
- Закон прямолинейного распространения света
- Закон независимого распространения лучей
- Закон отражения света
- Закон преломления света (Закон Снелла)
- Закон обратимости светового луча. Согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.
Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости, создаваемые ими, складываются.
Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала, которое допускает также словесную интерпретацию в виде принципа Ферма, из которого и выводятся перечисленные выше законы.
Частным видом геометрической оптики является матричная оптика.
Разделы геометрической оптики
Среди разделов геометрической оптики стоит отметить
- расчёт оптических систем в параксиальном приближении
- распространение света вне параксиального приближения, формирование каустик и прочих особенностей световых фронтов.
- распространение света в неоднородных и неизотропных средах (градиентная оптика)
- распространение света в волноводах и оптоволокне
- распространение света в гравитационных полях массивных астрофизических объектов, гравитационное линзирование.
История исследований
Евклид в «Оптике» показал прямолинейность распространения света.
Клавдий Птолемей исследовал преломление света на границе воздух—вода и воздух—стекло. Большую роль в развитии оптики, как науки сыграли ученые Востока, такими как ученые Азербайджана Бахманияр аль Азербайджани и Насреддин Туси. Они также имели свой взгляд на природу света и указывали, что свет имеет как свойства волны, так и свойства потока частиц. Арабский учёный Ибн ал-Хайсам (Аль-Гасан) изучал законы преломления и отражения света. Одним из первых высказал мысль о том, что источником световых лучей является не глаз, а светящиеся предметы. Он также в частности доказал, что изображение предмета возникает в хрусталике глаза. Он сумел получить изображения предметов в плоских, выпуклых, вогнутых, цилиндрических стеклах и линзах, а также показал, что выпуклая линза дает увеличенное изображение.
Иоганн Кеплер в трактате «Дополнения к Виттелию» («Оптическая астрономия», 1604) изложил основы геометрической оптики, сформулировал закон об обратно пропорциональной зависимости освещённости и квадрата расстояния от источника.Виллеброрд Снелл в 1621 году открыл закон преломления света (закон Снеллиуса).
Ссылки
Категория:- Геометрическая оптика
Wikimedia Foundation. 2010.