Четырёхполюсник

Четырёхполюсник

Четырёхпо́люсник — многополюсник, имеющий четыре точки подключения. Как правило, две точки являются входом, две другие — выходом.

Содержание

Общие сведения

Схема четырёхполюсника

При анализе электрических цепей очень часто бывает удобным выделить фрагмент цепи, имеющий две пары зажимов. Поскольку электрические (электронные) цепи очень часто связаны с передачей энергии или обработкой и преобразованием информации, одну пару зажимов обычно называют «входными», а вторую — «выходными». На входные зажимы подаётся исходный сигнал, с выходных снимается преобразованный.

Такими четырёхполюсниками являются, например, трансформаторы, усилители, фильтры, стабилизаторы напряжения, телефонные линии, линии электропередачи и т. д.

Однако математическая теория четырёхполюсников не предполагает никаких преопределённых потоков энергии/информации в цепях, поэтому названия «входные» и «выходные» являются данью традиции и с этой оговоркой будут использоваться далее.

Состояния входных и выходных зажимов определяются четырьмя параметрами: напряжением и током во входной (U1, I1) и выходной (U2, I2) цепях. В этой системе параметров линейный четырёхполюсник описывается системой из двух линейных уравнений, причём два из четырёх параметров состояния являются исходными, а два остальные — определяемыми. Для нелинейных четырёхполюсников зависимость может носить более сложный характер. Например, выходные параметры через входные можно выразить системой


\begin{cases}
  U_2=b_{11}U_1+b_{12}I_1 \\
  I_2=b_{21}U_1+b_{22}I_1 \\
\end{cases};~~~
\begin{pmatrix} U_2 \\ I_2 \end{pmatrix} = 
\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} 
\begin{pmatrix} U_1 \\ I_1 \end{pmatrix}

В дальнейшем будет использоваться запись системы уравнений в матричном виде, как наиболее удобная для восприятия.

Поскольку четырёхполюсник имеет четыре параметра состояния, очевидно, что имеется шесть систем уравнений, выражающих различные пары параметров через два остальных. Коэффициенты этих шести систем уравнений получили традиционное наименование A-, B-, G-, H-, Y- и Z-параметров. Системы уравнений и эквивалентные схемы четырёхполюсников при использовании каждого типа параметров показаны в таблице.1

Системы параметров

Системы уравнений, эквивалентные схемы, измерение параметров

Тип Система уравнений Эквивалентная схема Измерение параметров
~G \begin{pmatrix} I_1 \\ U_2 \end{pmatrix} = 
\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} 
\begin{pmatrix} U_1 \\ I_2 \end{pmatrix}
Equivalent Quadripole G.gif
~
g_{11} = \left. \frac{I_1}{U_1} \right|_{I_2 = 0} \quad
g_{12} = \left. \frac{I_1}{I_2} \right|_{U_1 = 0}

~
g_{21} = \left. \frac{U_2}{U_1} \right|_{I_2 = 0} \quad
g_{22} = \left. \frac{U_2}{I_2} \right|_{U_1 = 0}

~H \begin{pmatrix} U_1 \\ I_2 \end{pmatrix} = 
\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} 
\begin{pmatrix} I_1 \\ U_2 \end{pmatrix}
Equivalent Quadripole H.gif
~
h_{11} = \left. \frac{U_1}{I_1} \right|_{U_2 = 0} \quad
h_{12} = \left. \frac{U_1}{U_2} \right|_{I_1 = 0}

~
h_{21} = \left. \frac{I_2}{I_1} \right|_{U_2 = 0} \quad
h_{22} = \left. \frac{I_2}{U_2} \right|_{I_1 = 0}

~Y \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = 
\begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} 
\begin{pmatrix} U_1 \\ U_2 \end{pmatrix}
Equivalent Quadripole Y.gif
~
y_{11} = \left. \frac{I_1}{U_1} \right|_{U_2 = 0} \quad
y_{12} = \left. \frac{I_1}{U_2} \right|_{U_1 = 0}

~
y_{21} = \left. \frac{I_2}{U_1} \right|_{U_2 = 0} \quad
y_{22} = \left. \frac{I_2}{U_2} \right|_{U_1 = 0}

~Z \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = 
\begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} 
\begin{pmatrix} I_1 \\ I_2 \end{pmatrix}
Equivalent Quadripole Z.gif
~
z_{11} = \left. \frac{U_1}{I_1} \right|_{I_2 = 0} \quad
z_{12} = \left. \frac{U_1}{I_2} \right|_{I_1 = 0}

~
z_{21} = \left. \frac{U_2}{I_1} \right|_{I_2 = 0} \quad
z_{22} = \left. \frac{U_2}{I_2} \right|_{I_1 = 0}

~A \begin{pmatrix} U_1 \\ I_1 \end{pmatrix} = 
\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} 
\begin{pmatrix} U_2 \\ I_2 \end{pmatrix} 
~
a_{11} = \left. \frac{U_1}{U_2} \right|_{I_2 = 0} \quad
a_{12} = \left. \frac{U_1}{I_2} \right|_{U_2 = 0}

~
a_{21} = \left. \frac{I_1}{U_2} \right|_{I_2 = 0} \quad
a_{22} = \left. \frac{I_1}{I_2} \right|_{U_2 = 0}

~B \begin{pmatrix} U_2 \\ I_2 \end{pmatrix} = 
\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} 
\begin{pmatrix} U_1 \\ I_1 \end{pmatrix} 
~
b_{11} = \left. \frac{U_2}{U_1} \right|_{I_1 = 0} \quad
b_{12} = \left. \frac{U_2}{I_1} \right|_{U_1 = 0}

~
b_{21} = \left. \frac{I_2}{U_1} \right|_{I_1 = 0} \quad
b_{22} = \left. \frac{I_2}{I_1} \right|_{U_1 = 0}

Преобразование параметров

~H ~Y ~Z ~G ~A
~H

~h_{11}=1/y_{11}
~h_{12}=-y_{12}/y_{11}
~h_{21}=y_{21}/y_{11}
~h_{22}=\Delta_y/y_{11}
~\Delta_h=y_{22}/y_{11}

~h_{11}=\Delta_z/z_{22}
~h_{12}=z_{12}/z_{22}
~h_{21}=-z_{21}/z_{22}
~h_{22}=1/z_{22}
~\Delta_h=z_{11}/z_{22}

~h_{11}=g_{22}/\Delta_g
~h_{12}=-g_{12}/\Delta_g
~h_{21}=-g_{21}/\Delta_g
~h_{22}=g_{11}/\Delta_g
~\Delta_h=1/\Delta_g

~h_{11}=B/D
~h_{12}=\Delta_A/D
~h_{21}=-1/D
~h_{22}=C/D

~Y

~y_{11}=1/h_{11}
~y_{12}=-h_{12}/h_{11}
~y_{21}=h_{21}/h_{11}
~y_{22}=\Delta_h/h_{11}
~\Delta_y=h_{22}/h_{11}

~y_{11}=z_{22}/\Delta_z
~y_{12}=-z_{12}/\Delta_z
~y_{21}=-z_{21}/\Delta_z
~y_{22}=z_{11}/\Delta_z
~\Delta_y=1/\Delta_z

~y_{11}=\Delta_g/g_{22}
~y_{12}=g_{12}/g_{22}
~y_{21}=-g_{21}/g_{22}
~y_{22}=1/g_{22}
~\Delta_y=g_{11}/g_{22}

~y_{11}=D/B
~y_{12}=-\Delta_A/B
~y_{21}=-1/B
~y_{22}=A/B

~Z

~z_{11}=\Delta_h/h_{22}
~z_{12}=h_{12}/h_{22}
~z_{21}=-h_{21}/h_{22}
~z_{22}=1/h_{22}
~\Delta_z=h_{11}/h_{22}

~z_{11}=y_{22}/\Delta_y
~z_{12}=-y_{12}/\Delta_y
~z_{21}=-y_{21}/\Delta_y
~z_{22}=y_{11}/\Delta_y
~\Delta_z=1/\Delta_y

~z_{11}=1/g_{11}
~z_{12}=-g_{12}/g_{11}
~z_{21}=g_{21}/g_{11}
~z_{22}=\Delta_g/g_{11}
~\Delta_z=g_{22}/g_{11}

~z_{11}=A/C
~z_{12}=\Delta_A/C
~z_{21}=1/C
~z_{22}=D/C

~G

~g_{11}=h_{22}/\Delta_h
~g_{12}=-h_{12}/\Delta_h
~g_{21}=-h_{21}/\Delta_h
~g_{22}=h_{11}/\Delta_h
~\Delta_g=1/\Delta_h

~g_{11}=\Delta_y/y_{22}
~g_{12}=y_{12}/y_{22}
~g_{21}=-y_{21}/y_{22}
~g_{22}=1/y_{22}
~\Delta_g=y_{11}/y_{22}

~g_{11}=1/z_{11}
~g_{12}=-z_{12}/z_{11}
~g_{21}=z_{21}/z_{11}
~g_{22}=\Delta_z/z_{11}
~\Delta_g=z_{22}/z_{11}

~g_{11}=C/A
~g_{12}=-\Delta_A/A
~g_{21}=\Delta_A/A
~g_{22}=B/A

~A

A=-\Delta_h/h_{21}
B=h_{11}/h_{21}
C=-h_{22}/h_{21}
D=-1/h_{21}

A=-y_{22}/y_{21}
B=-1/y_{21}
C=-\Delta_y/y_{21}
D=-y_{11}/y_{21}

A=z_{11}/z_{21}
B=\Delta_z/z_{21}
C=1/z_{21}
D=z_{22}/z_{21}

A=1/g_{21}
B=g_{22}/g_{21}
C=g_{11}/g_{21}
D=\Delta_g/g_{21}

Преобразования схем

Rin, Rout — входное и выходное сопротивления; KI, KU — коэффициенты усиления по току и напряжению.

~
R_{in}=\frac{U_1}{I_1}; \qquad
R_{out}=\frac{U_2}{I_2}; \qquad
K_{I}=\frac{I_2}{I_1}; \qquad
K_{U}=\frac{U_2}{U_1}.

Схема ~H ~Y ~Z ~G
Quadripole 01.gif

~R_{in}=\frac{h_{11}+\Delta_h R}{1+h_{22} R}

~R_{out}=\frac{h_{11}+r}{\Delta_h+h_{22} r}

~K_{I}=\frac{h_{21}}{1+h_{22} R}

~K_{U}=\frac{-h_{21} R}{h_{11}+\Delta_h R}

~R_{in}=\frac{ 1+y_{22} R }{   y_{11}+\Delta_y R   }

~R_{out}=\frac{   1+y_{11} r   }{   y_{22}+\Delta_y r   }

~K_{I}=\frac{   y_{21}   }{   y_{11}+ \Delta_y R    }

~K_{U}=\frac{   -y_{21} R   }{   1+y_{22} R   }

~R_{in}=\frac{   \Delta_z + z_{11} R   }{   z_{22}+R   }

~R_{out}=\frac{   \Delta_z + z_{22} r   }{   z_{22}+r   }

~K_{I}=\frac{   -z_{21}   }{   z_{22}+R    }

~K_{U}=\frac{   z_{21} R   }{   \Delta_z+z_{11} R   }

~R_{in}=\frac{   g_{22}+R   }{   \Delta_g+g_{11} R   }

~R_{out}=\frac{   g_{22}+\Delta_g r   }{   1+g_{11} r   }

~K_{I}=\frac{   -g_{21}   }{   \Delta_g+g_{11} R    }

~K_{U}=\frac{   g_{21} R   }{   g_{22}+R   }

Описание четырёхполюсника

Линейный четырёхполюсник, не содержащий независимых источников (напряжения и/или тока), описывается четырьмя параметрами (из которых только три являются независимыми). Как правило, используется одна из шести систем формальных параметров четырёхполюсника:

  • система а-параметров
  • система z-параметров
  • система y-параметров
  • система h-параметров
  • система g-параметров
  • система b-параметров

Конкретная система выбирается из соображений удобства. Выбор зависит от того, какой параметр (напряжение или ток) является входным и какой — выходным сигналом для данного четырёхполюсника.

В указанных системах формальных параметров не могут быть учтены произвольные внутренние источники (например, постоянного тока), допускаются только управляемые генераторы тока и управляемые генераторы напряжения, которые управляются входными сигналами четырёхполюсника. Поэтому в качестве четырёхполюсников рассматриваются, как правило, эквивалентные схемы по переменному току.

Существуют два типа вторичных параметров четырёхполюсников:

  • Характеристические сопротивления Zc
  • постоянные передачи Г.

Но как правило они используются для расчёта и исследования каскадного соединения одинаковых четырёхполюсников.

Также существуют

Симметричный четырёхполюсник — четырёхполюсник, у которого схема одинакова относительно его входных и выходных зажимов. Тогда для симметричного четырёхполюсника Z11 = Z22. Ещё: если при перемене местами источника и приемника энергии их токи не меняются, то такой четырёхполюсник называется симметричным.

Пассивный четырёхполюсник — это четырёхполюсник, который не содержит источников энергии, либо содержит скомпенсированные источники энергии.

Активный четырёхполюсник — это четырёхполюсник, который содержит нескомпенсированные источники энергии.

Обратимый четырёхполюсник — четырёхполюсник, у которого выполняется теорема обратимости, то есть передаточное сопротивление входных и выходных контуров не зависят от того, какая пара зажимов входная, а какая выходная: U1/I2=U2/I1


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?
Синонимы:

Полезное


Смотреть что такое "Четырёхполюсник" в других словарях:

  • четырёхполюсник — четырёхполюсник …   Словарь употребления буквы Ё

  • четырёхполюсник — keturpolis statusas T sritis automatika atitikmenys: angl. four pole; four terminal network; quadripole; two port; two port network vok. Vierpol, m rus. четырёхполюсник, m pranc. quadripôle, m; tétrapôle, m …   Automatikos terminų žodynas

  • четырёхполюсник — keturpolis statusas T sritis fizika atitikmenys: angl. four terminal network; quadripole vok. Vierpol, m rus. четырёхполюсник, m pranc. quadripôle, m; réseau à quatre bornes, m …   Fizikos terminų žodynas

  • четырёхполюсник — многополюсник, имеющий 4 точки подключения. * * * ЧЕТЫРЕХПОЛЮСНИК ЧЕТЫРЕХПОЛЮСНИК, многополюсник, имеющий 4 точки подключения …   Энциклопедический словарь

  • четырёхполюсник — четырёхп олюсник, а …   Русский орфографический словарь

  • четырёхполюсник — четыр/ёх/полюс/ник/ …   Морфемно-орфографический словарь

  • четырёхполюсник мостового типа — tiltelinis keturpolis statusas T sritis radioelektronika atitikmenys: angl. lattice network; lattice two port vok. Vierpolkreuzglied, n rus. четырёхполюсник мостового типа, m pranc. biporte en treillis, m …   Radioelektronikos terminų žodynas

  • ЧЕТЫРЁХПОЛЮСНИК — многополюсник, имеющий четыре точки подключения к внешним по отношению к нему цепям. Обычно выводы делят на 2 пары входные и выходные (см. рис.). Ч., не содержащие источников энергии, наз. пассивными, а при наличии такого источника активными. К… …   Большой энциклопедический политехнический словарь

  • Четырёхполюсник —         электрическая цепь (её участок) с четырьмя полюсами (зажимами), к которым могут подключаться другие цепи (участки цепи); наиболее распространённый тип Многополюсника. В Ч. обычно различают две пары зажимов (рис.): входные и выходные… …   Большая советская энциклопедия

  • взаимный четырёхполюсник — обратимый четырёхполюсник — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы обратимый четырёхполюсник EN… …   Справочник технического переводчика


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»