- Кольца Лизеганга
-
Кольца Лизеганга (также слои Лизеганга, общее название структуры Лизеганга) — концентрические кольца или ритмически перемежающиеся полосы, возникающие в результате периодического осаждения каких-либо соединений при диффузии в гелевых средах. Названы в честь первооткрывателя явления — немецкого химика и предпринимателя Р. Лизеганга.
Содержание
История
Концентрические структуры впервые были получены в 1896 году немецким химиком Р. Лизегангом. Работая в химической лаборатории фотофабрики, принадлежавшей отцу, он обнаружил, что капля раствора нитрата серебра AgNO3 на фотопластинке, покрытой слоем желатины, который содержит хромпик К2Сr2О7, образуются агрегаты мелких кристаллов Ag2Cr2O7 в виде концентрических колец, напоминающих годичные кольца на спиле дерева. Лизеганг увлекся этим явлением и почти полвека занимался его исследованием.
Сам Р. Лизеганг, знакомый с первыми работами по изучению колебательных реакций Ф. Рунге, первоначально склонялся к натурфилософскому объяснению полученного им периодического процесса.
Возможный физический механизм, объясняющий образование структур Лизеганга, был впервые предложен одним из основателей физической химии В. Оствальдом в 1897 году. Объяснение, данное Оствальдом, базировалось на понятии о метастабильном состоянии и явлении оствальдовского созревания, открытом им годом ранее. Оствальд предположил, что у Лизеганга образовывался пересыщенный раствор бихромата серебра, находящийся в метастабильном состоянии. Дальнейшая диффузия реагентов вызывала образование осадка и перевод системы в лабильное состояние. Дальнейшее взаимодействие бихромата калия и нитрата серебра переводила её снова в метастабильное состояние и т. д.[1]
В 1905 году Лизеганг отверг модель Оствальда, получив новые эмпирические факты. Однако впоследствии, проведя новые эксперименты, он стал её ревностным сторонником.
Получение
Структуры Лизеганга обычно получают при диффузии одного из исходных веществ через гель, содержащий другое вещество, способное с первым образовывать нерастворимый осадок.
На протяжении десятилетий огромное количество реакций осаждения было использовано для изучения явления, показав его общий характер. Структуры Лизеганга получены для хроматов, галогенидов, гидроксидов металлов, карбонатов и сульфидов свинца, меди, серебра, ртути и др.[2]
Примеры используемых для этого химических реакций:
- HCl + AgNO3 → AgCl↓ + HNO3;
- 2KI + Pb(NO3)2 → PbI2↓ + KNO3;
- MgSO4 + 2NH3 + 2H2O → Mg(OH)2↓ + (NH4)2SO4.
Для получения среды используются, как правило, желатин, агар-агар или силикагель. Структуры Лизеганга могут быть получены и без желирующего вещества, если эксперимент проводится в капилляре, где конвекция среды не мешает их формированию. Аналогичное явление происходит не только в гелях, но и в уплотнённых инертных порошках (кварца, кизельгура и т. п.), пропитанных раствором соответствующего реагента.
Их получение возможно и в отсутствии жидкой среды. Например, слоистые структуры образуются при определенных условиях в газовой среде при взаимодействии аммиака и хлороводорода. Образование колец возможно и в твердых телах: так, полосы из серебра были получены путем погружения силикатного стекла в расплавленный AgNO3 в течение длительного периода времени.
Эксперименты обычно проводятся либо в пробирке, либо в чашке Петри. В первом случае один из реагентов первоначально растворяют в геле и помещают в пробирку. Затем поверх наливается раствор другого реагента большей концентрации. В результате в области разделения фаз начинается образование осадка в форме полос, параллельных диффузионному фронту, разделенных свободными от осадка промежутками (см. илл.).
В чашке Петри, как правило, образуются концентрические кольца осадка, если концентрированный раствор одного их исходных веществ вносится в центр чашки, уже содержащей гель другого вещества. В этих условиях волна химической реакции движется от центра к периферии чашки в результате диффузии внесенного вещества, оставляя позади себя четко разделенные кольца осадка. Также возможно образование более сложных структур: таких, как спиральные структуры и «кольца Сатурна» (в пробирке) и дислокации колец (в чашке Петри).
Природа явления
Слои и кольца Лизеганга относятся к периодическим коллоидным структурам, которые, по-видимому, были первым примером изученных самоорганизованных структур[3]. По важнейшим признакам кольца Лизеганга имеют значительное сходство с кольцевыми структурами, возникающими вследствие автоволновых процессов, приводящими к возникновению самоорганизованных структур с различным масштабом упорядочения (нано-, мезо-, микро- и макроуровень)[4].
Природные объекты
С образованием слоев Лизеганга связывают послойную окраску минералов (агата, яшмы)[5]. Лизеганг сделал немало важных наблюдений над агатами, опубликовал книгу о них и большую серию статей и разработал собственную теорию (1915). По его мнению, агаты образовались не из растворов, а из гелей кремнезема, которые заполнили агатовые камеры и затем «созревали» в них — разделялись на концентрические слои и кристаллизовались, превращаясь в халцедон[6].
Очень похожие образования возникают в слоистой структуре тонкопористых пород при процессах выветривания. Таковы, например, ритмические кольца, полосы, гиперболы, окрашенные бурыми гидрооксидами железа, в известняках, мелкозернистых песчаниках и других породах.
Полосато-слоистую структуру имеют конкременты в органах животных и человека, некоторые биологические ткани, например поперечнополосатые мышцы.
Применение
Открытое Лизегангом явление нашло практическое применение при изучении различных процессов в физике и химии, в прикладном искусстве, для украшения различных изделий с имитацией яшмы, малахита, агата и др. Лизеганг также предложил технологию изготовления искусственного жемчуга.
Примечания
- ↑ Печёнкин А. А. Мировоззренческое значение колебательных химических реакций
- ↑ См. библиографию: Матвейчук Ю. В. Периодичность распределения вещества в геле кремниевой кислоты. Автореф. канд. хим. наук, 2002.
- ↑ Сумм Б. Д., Иванова Н. И. Объекты и методы коллоидной химии в нанохимии // Успехи химии, 69, 995 (2000)
- ↑ Сумм Б. Д., Иванова Н. И. Коллоидно-химические аспекты нанохимии — от Фарадея до Пригожина // Вестн. Моск. ун-та. Сер. 2. Химия. 2001. Т. 42. № 5
- ↑ Бетехтин А. Г. Курс минералогии. — М.: «Госгеолтехиздат», 1956. — 558 с.
- ↑ Следует отметить, что «гелевая» гипотеза образования агатов подвергается обоснованной критике в современных публикациях. См. Кантор Б. З. О генезисе агатов: новые данные
Литература
- Зимон А. Д., Лещенко Н. Ф. Коллоидная химия. Изд 3-е. — М.: Изд-во «Агар», 2001.
- Лурье А. А. К теории колец Лизеганга // Коллоид, ж., 1966. Т.28. — №.4.1. C,534-537.
Ссылки
- Сумм Б. Д., Иванова Н. И. Объекты и методы коллоидной химии в нанохимии // Успехи химии, 69, 995 (2000).
- Полежаев А. А. Теория структур Лизеганга // «Математика. Компьютер. Образование». Cб. трудов X международной конференции. Под общей редакцией Г. Ю. Ризниченко Ижевск: Научно-издательский центр «Регулярная и хаотическая динамика», 2003. Том 2. Стр. 307—319.
- Самоорганизация в природе (фото)
Кольца Лизеганга на Викискладе? Категории:- Коллоидная химия
- Растворы
- Неравновесная термодинамика
- Автоколебательные реакции
Wikimedia Foundation. 2010.