- Принцип Дюамеля
-
В математике, а более конкретно в дифференциальных уравнениях, принцип Дюамеля позволяет найти решение неоднородного волнового уравнения, а также неоднородного уравнения теплопроводности[1]. Он назван в честь Жан-Мари Констан Дюамель (1797—1872), французского математика.
Дано неоднородное волновое уравнение:
с начальными условиями
Решение имеет вид:
Для линейного ОДУ с постоянными коэффициентами
Принцип Дюамеля говорит, что решение неоднородного линейного уравнения в частных производных может быть найдено путем нахождения решения для однородного уравнения, а затем подстановкой его в интеграл Дюамеля. Предположим, у нас есть неоднородное обыкновенные дифференциальные уравнения с постоянными коэффициентами порядка m:
где
Мы можем решить сначала однородное ОДУ, используя следующие методы. Все шаги делаются формально, игнорируя требования, необходимые для того, чтобы решение было четко определено.
Определим
,
- характеристическaя функция на интервале
. Тогда
есть обобщённая функция.
есть решение ОДУ.
Для уравнений в частных производных
Пусть есть неоднородное уравнение в частных производных с постоянными коэффициентами:
где
Мы можем решить сначала однородное ОДУ, используя следующие методы. Все шаги делаются формально, игнорируя требования, необходимые для того, чтобы решение было четко определено.
Сначала, используя Преобразование Фурье в x имеем
где
это ОДУ порядка m по t. Пусть
это коэффициент слагаемого наивысшего порядка в
.
Для каждого
решим
Определим
. Тогда
есть обобщённая функция.
есть решение уравнения (после перехода назад к x).
Примечания
Категории:- Дифференциальные уравнения в частных производных
- Физические законы и уравнения
Wikimedia Foundation. 2010.