Рекурсивные функции

Рекурсивные функции

Рекурси́вная фу́нкция (от лат. recursio — возвращение) — это числовая функция f(n) числового аргумента, которая в своей записи содержит себя же. Такая запись позволяет вычислять значения f(n) на основе значений f(n-1), f(n-2),\ldots, подобно рассуждению по индукции.Чтобы вычисление завершалось для любого n, необходимо, чтобы для некоторых n функция была определена нерекурсивно (например, для n = 0,1). Вот пример рекурсивной функции, дающей n-ое число Фибоначчи:

 F = \begin{cases} F(0)=1; \\ F(1) = 1; \\ F(n) = F(n-1) + F(n-2),\quad n > 1. 
\end{cases}

Руководствуясь этой записью, мы можем вычислить F(n) для любого натурального n за конечное число шагов. Правда, по пути придется дополнительно вычислить значения F(n-1),F(n-2),\ldots,F(2), В связи с этими накладными расходами полезно знать, есть ли у рекурсивной функции нерекурсивная (замкнутая) форма.

Например, рекурсивния функция:

 f = \begin{cases} f(0)=0; \\ f(n) = n + f(n-1),\quad n > 0 \end{cases}

может быть переведена в замкнутую форму: f = \frac{n(n+1)}{2}. Замкнутая форма может быть найдена не для всех рекурсивных функций (соотношений). Для некоторых из них найдены лишь приближенные замкнутые формы. Некоторые рекурсивные соотношения, такие как факториал, считаются элементарными математическими операциями.

Рекурсивные функции играют важную роль в теории алгоритмов, так как многие алгоритмы имеют рекурсивную структуру.



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Рекурсивные функции" в других словарях:

  • Рекурсивные функции — (от позднелатинского recursio возвращение)         название, закрепившееся за одним из наиболее распространённых вариантов уточнения общего понятия арифметического алгоритма, т.е. такого Алгоритма, допустимые исходные данные которого представляют …   Большая советская энциклопедия

  • РЕКУРСИВНЫЕ ФУНКЦИИ И ПРЕДИКАТЫ — один из важнейших для оснований математики и математич. логики классов понятий, служащих уточнениями содержат. понятий эффективно вычислимой арифметической функции и эффективно разрешимого арифметического предиката, а в конечном счете, – и… …   Философская энциклопедия

  • рекурсивные функции — (лат. recursio возвращение) такие функции, значения которых для данного аргумента вычисляются с помощью значений для предшествующих аргументов; термин, употребляемый в современных исследованиях по основаниям арифметики. Новый словарь иностранных… …   Словарь иностранных слов русского языка

  • РЕКУРСИИ ВЫСШИХ СТУПЕНЕЙ — рекурсивные определения, в к рых в качестве вспомогательных объектов наряду с числовыми функциями используются нек рые функционалы более высоких типов. Напр., для случая рекурсии второй ступени таковыми являются подстановочные функционалы вида а… …   Математическая энциклопедия

  • Примитивно рекурсивная функция — Термин рекурсивные функции в теории вычислимости используют для обозначения трёх множеств функций примитивно рекурсивные функции; общерекурсивные функции; частично рекурсивные функции. Последние совпадают с множеством вычислимых по Тьюрингу… …   Википедия

  • Частично рекурсивная функция — Термин рекурсивные функции в теории вычислимости используют для обозначения трёх множеств функций примитивно рекурсивные функции; общерекурсивные функции; частично рекурсивные функции. Последние совпадают с множеством вычислимых по Тьюрингу… …   Википедия

  • Общерекурсивная функция — Термин рекурсивные функции в теории вычислимости используют для обозначения трёх множеств функций примитивно рекурсивные функции; общерекурсивные функции; частично рекурсивные функции. Последние совпадают с множеством вычислимых по Тьюрингу… …   Википедия

  • Рекурсивная функция (теория вычислимости) — У этого термина существуют и другие значения, см. Рекурсивная функция (значения). Термин рекурсивная функция в теории вычислимости используется для обозначения трёх классов функций примитивно рекурсивные функции; общерекурсивные функции; …   Википедия

  • РЕКУРСИЯ — способ определения функций, являющийся объектом изучения в теории алгоритмов и других разделах математич. логики. Этот способ давно применяется в арифметике для определения числовых последовательностей (прогрессии, чисел Фибоначчи и пр.).… …   Математическая энциклопедия

  • АЛГОРИТМ —         [от algorithm!; algorismus, первоначально лат. транслитерация имени ср. азиат. учёного 9 в. Хорезми (Мухаммед бен Муса аль Хорезми)], программа, определяющая способ поведения (вычисления); система правил (предписаний) для эффективного… …   Философская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»