- М-оценки
-
М-оценки
Наиболее эффективными и широко используемыми оценками параметров законов распределений являются оценки максимального правдоподобия (ОМП), которые определяются одним из следующих условий:
где в случае негруппированной выборки
, а в случае группированной —
М-оценки — есть некое обобщение ОМП. Они определяются аналогично одним из соотношений:
Если наложить условие регулярности в подстановке
и продифференцировать его по
в 0:
то не представляет большого труда получить выражение функции влияния для M-оценок:
Указанное выражение позволяет сделать вывод о том, что M-оценки эквивалентны с точностью до ненулевого множителя-константы.
Пример функций влияния для усечённых ОМП параметров сдвига (син.) и параметра масштаба (красн.) стандартного нормального закона распределения.Несложно проверить, что для ОМП стандартного нормального закона распределения
функции влияния
параметра сдвига и параметра масштаба выглядят соответственно:
Эти функции неограничены, а это значит, что ОМП не является робастной в терминах B-робастности.
Для того, чтобы это исправить, M-оценки искусственно ограничивают, а значит и ограничивают ее
(см. выражение
для M-оценок), устанавливая верхний барьер на влияние резко выделяющихся (далеко отстоящих от предполагаемых значений параметров) наблюдений. Делается это введением так называемых усечённых M-оценок, определяемых выражением:
где
,
и
— оценки параметров сдвига и масштаба соответственно.
Среди усечённых M-оценок оптимальными с точки зрения B-робастности являются усечённые ОМП.
См. также
Источники
- Robert G. Staudte: Robust estimation and testing. Wiley, New York 1990. ISBN 0-471-85547-2
- Rand R. Wilcox: Introduction to robust estimation and hypothesis testing. Academic Press, San Diego Cal 1997. ISBN 0-12-751545-3
Категория:- Регрессионный анализ
-
Wikimedia Foundation. 2010.