- Функция-оригинал
-
Функция-оригинал — фундаментальное понятие в операционном исчислении; для того, чтобы функция
могла называться оригиналом, она должна удовлетворять трем условиям:
удовлетворяет условию Гёльдера почти всюду на вещественной прямой
, притом на произвольном конечном интервале
множество точек, в которых указанное условие не выполняется, конечно, притом в этих точках она должна претерпевать разрыв 1-го рода. Формально, для произвольного
, не относящегося к упомянутому множеству, должны существовать положительные постоянные
, такие, что
для произвольного
.
при
.
- на функцию
накладывается определённое ограничение — она должна возрастать не быстрее показательной функции. Формально, для этой функции должны существовать постоянные
такие, что
для произвольного
.
Для большинства физических задач все эти три условия соблюдены. Более того, с использованием функции Хевисайда
можно получить функцию-оригинал из функции, удовлетворяющей только условиям 1 и 3.
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011.Категория:- Операционное исчисление
Wikimedia Foundation. 2010.