СЧЁТНОЕ МНОЖЕСТВО

СЧЁТНОЕ МНОЖЕСТВО

понятие теории множеств, бесконечное множество, элементы к-рого возможно занумеровать натуральными числами. Множество всех рациональных чисел и далее множество всех алгебр. чисел счётны, однако множество всех действит. чисел несчётно.


Естествознание. Энциклопедический словарь.

Игры ⚽ Поможем написать реферат

Смотреть что такое "СЧЁТНОЕ МНОЖЕСТВО" в других словарях:

  • Счётное множество — Не следует путать с перечислимым множеством. В теории множеств, счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество является счётным, если существует биекция ,… …   Википедия

  • Несчётное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… …   Википедия

  • несчётное множество — понятие теории множеств; бесконечное множество, мощность которого больше, чем мощность счётного множества. Например, множество всех действительных чисел  несчётное множество. * * * НЕСЧЕТНОЕ МНОЖЕСТВО НЕСЧЕТНОЕ МНОЖЕСТВО, понятие теории множеств; …   Энциклопедический словарь

  • счётное множество — понятие теории множеств, бесконечное множество, элементы которого возможно занумеровать натуральными числами. Множество всех рациональных чисел и даже множество всех алгебраических чисел счётны, однако множество всех действительных чисел несчётно …   Энциклопедический словарь

  • Счётное множество —         бесконечное множество, элементы которого можно занумеровать натуральными числами, то есть установить Взаимно однозначное соответствие между этим множеством и множеством всех натуральных чисел. Как доказал Г. Кантор, множество всех… …   Большая советская энциклопедия

  • Множество Витали — Множество Витали  первый пример множества вещественных чисел, не имеющего меры Лебега. Этот пример, ставший классическим, опубликовал в 1905 году итальянский математик Дж. Витали в своей статье «Sul problema della misura dei gruppi di punti… …   Википедия

  • МНОЖЕСТВО — набор, совокупность, собрание к. л. объектов, называемых его элементами, обладающих общим для всех них характеристич. свойством. Понятие M. принадлежит к числу первоначальных матем. понятий и может быть пояснено только при помощи примеров. Так,… …   Физическая энциклопедия

  • Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • множество — а; ср. 1. Очень большое количество, число кого , чего л. М. народа. М. фактов. Вырастить м. цветов. Доказательства представлены во множестве. Великое м. примеров (очень много). 2. Матем. Совокупность элементов, объединённых по какому л. признаку …   Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»