СЛОЖНАЯ ФУНКЦИЯ — функция от функции. Если величина y является функцией от u, то есть y = f(u), а u, в свою очередь, функцией от x, то есть u = ?(x), то y = F(x) является сложной функцией от x, то есть y = F(x) = fСЛОЖНОЕ вещество вещество, молекула которого… … Большой Энциклопедический словарь
сложная функция — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN composite function … Справочник технического переводчика
сложная функция — функция от функции. Если величина у является функцией от u, то есть у = f(u), а u, в свою очередь, функцией от х, то есть и = φ(х), то у=F(х) является сложной функцией от х, то есть y=F(x)=f[φ(x)]. * * * СЛОЖНАЯ ФУНКЦИЯ СЛОЖНАЯ ФУНКЦИЯ, функция… … Энциклопедический словарь
СЛОЖНАЯ ФУНКЦИЯ — функция, представленная как композиция нескольких функций. Если множество значений Yi функции fi содержится во множестве определения Х i+1 функции fi+1, т. е. то функция определяемая равенством наз. сложной функцией или (п 1) кратной композицией… … Математическая энциклопедия
Сложная функция — функция от функции. Если величина y является функцией от u, то есть у = f (u), а и, в свою очередь, функцией от х, то есть u = φ(х), то у является С. ф. от х, то есть y = f [(x)], определённой для тех значений х, для которых значения φ(х) … Большая советская энциклопедия
Сложная функция — … Википедия
Сложная трёхчастная форма — Сложная трёхчастная форма музыкальная репризная трёхчастная форма, первая часть которой сложнее периода. Чаще всего первая часть представляет собой простую двух или трёхчастную форму, но иногда бывает и сложнее (кроме того, средний раздел… … Википедия
МОДУЛЯРНАЯ ФУНКЦИЯ — эллиптическая модулярная функция, одного комплексного переменного автоморфная функция комплексного переменного ассоциированная с группой Г всех дробно линейных преобразований вида где целые действительные числа (эта группа наз. модулярной).… … Математическая энциклопедия
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия
АБСОЛЮТНАЯ НЕПРЕРЫВНОСТЬ — 1) А. н. интеграла свойство неопределенного интеграла (Лебега). Пусть функция f интегрируема на множестве Е. Интеграл от f на измеримых подмножествах является абсолютно непрерывной функцией (см. ниже п. 3) множества относительно меры m, т. е. для … Математическая энциклопедия