логика высказываний


логика высказываний
(Пропозициональная логика)- раздел логики, формализующий употребление логических связок "и", "или", "не", "если, то" и т. п., служащих для образования сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется с л о ж н ы м. В Л. в. простые высказывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением.
В логике классической предполагается, что простое высказывание является либо истинным, либо ложным (см.: Двузначности принцип) и что истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.
Так, соединение двух высказываний с помощью связки "и" дает сложное высказывание (именуемое конъюнкцией), являющееся истинным, только когда оба составляющие его высказывания истинны. Сложное высказывание, образованное с помощью связки "или" (дизъюнкция), истинно, если и только если хотя бы одно из двух входящих в него высказываний истинно. Сложное высказывание, образованное с помощью "не" (отрицания), истинно, если только исходное высказывание ложно. Сложное высказывание, полученное из двух высказываний с помощью связки "если, то" (импликация), истинно в трех случаях: оба входящие в него высказывания истинны, оба они ложны, первое из этих высказываний(следующее за словом "если") ложно, а второе (следующее за словом "то") истинно; импликация является ложной только когда первое из составляющих ее высказываний истинно, а второе ложно.
Возможны и другие способы образования сложных высказываний. Всего в классической двузначной логике четыре способа образования сложного высказывания из одного высказывания и шестнадцать способов образования сложного высказывания из двух высказываний.
Язык Л. в. включает бесконечное множество переменных: р, q, r,..., p1, q1, r1, ..., представляющих высказывания, и особые символы для логических связок : & - конъюнкция ("и"), v - дизъюнкция ("или"), логика высказываний - отрицание ("не" или "неверно, что"), - - импликация ("если, то"). Роль знаков препинания обычного языка играют скобки. Понятие формулы в Л. в. определяется так: отдельная переменная является формулой; если A и В - формулы, то (А&В), (AvB), логика высказыванийA и (A-B) также формулы.
Формулам Л. в., образованным из переменных и связок, в естественном языке соответствуют предложения. Напр., если р есть высказывание "Сейчас ночь", q - высказывание "Сейчас темно" и r - высказывание "Сейчас ветрено", то формула (p-(qvr)) представляет высказывание "Если сейчас ночь, то сейчас темно или ветрено", формула ((q&.r)->p) - высказывание "Если сейчас темно и ветренно, то сейчас ночь", формула (логика высказыванийq->логика высказыванийp) - высказывание: "Если неверно, что сейчас темно, то сейчас не ночь" и т. п. Подставляя вместо переменных другие высказывания, получим другие переводы указанных формул на обычный язык.
Каждой формуле Л. в. можно поставить в соответствие таблицу истинности, указывающую зависимость истинностного значения формулы от истинностных значений входящих в нее переменных. Напр., формула (логика высказыванийq->логика высказыванийp) принимает значение "ложно" только в случае ложности q и истинности р.
Формула Л. в. называется тождественно-истинной, или тавтологией, если и только если она принимает значение "истинно" при всех распределениях истинностных значений входящих в нее простых высказываний. Формула, принимающая при всех распределениях значение "ложно", называется противоречием. Тавтологии выражают логические законы. К тавтологиям относятся, в частности, формулы:
(р-р) - закон тождества, логика высказываний(р&логика высказыванийр) - закон непротиворечия,
(pvлогика высказыванийp) - закон исключенного третьего, (p-q)->(логика высказыванийq->логика высказыванийp) - закон контрапозиции.
Множество тавтологий бесконечно.
Л. в. может быть представлена также в форме логического исчисления, в котором задается способ доказательства некоторых высказываний (формул), называемых теоремами. Исчисление может быть формализовано с помощью аксиоматического метода. При этом указываются формулы, принимаемые в качестве аксиом, и задаются правила вывода, позволяющие получать из аксиом теоремы. Аксиоматическое исчисление высказываний строится таким образом, чтобы класс теорем совпадал с классом тавтологий, т. е. чтобы каждая теорема была тавтологией и каждая тавтология - теоремой (см.: Полнота). По отношению к аксиоматическому построению встают также вопросы о его непротиворечивости и независимости принятых аксиом и правил вывода.
Наряду с классической Л. в., предполагающей, что всякое высказывание является истинным или ложным, существуют многообразные неклассические Л. в. В числе последних - многозначные Л. в., интуиционистская Л. в. и др.

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. . 1997.

Смотреть что такое "логика высказываний" в других словарях:

  • ЛОГИКА ВЫСКАЗЫВАНИЙ — раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями. В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно …   Философская энциклопедия

  • логика высказываний —         ЛОГИКА ВЫСКАЗЫВАНИЙ, пропозициональная логика раздел символической логики, изучающий         сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, простые высказывания при этом выступают как… …   Энциклопедия эпистемологии и философии науки

  • ЛОГИКА ВЫСКАЗЫВАНИЙ — раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из т. н. элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью… …   Большой Энциклопедический словарь

  • Логика высказываний — Для улучшения этой статьи желательно?: Проставив сноски, внести более точные указания на источники. Логика высказываний (или пропозици …   Википедия

  • логика высказываний — раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из так называемых элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью… …   Энциклопедический словарь

  • Логика высказываний —         раздел математической логики (См. Логика), посвященный изучению логических форм сложных высказываний, образованных из элементарных высказываний с помощью связок, аналогичных союзам «и», «или», «если..., то...», отрицания («не») и др …   Большая советская энциклопедия

  • ЛОГИКА ВЫСКАЗЫВАНИЙ — раздел логики, в к ром вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из т.н. элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью логич.… …   Естествознание. Энциклопедический словарь

  • Логика высказываний — раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из, так называемых, элементарных высказываний с помощью логических операций коньюкции («и»),… …   Исследовательская деятельность. Словарь

  • ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА — раздел дедуктивной логики, в котором вопрос об истинности (или ложности) высказываний (т. е. суждений, рассматриваемых без их субъектно предикатной структуры) в умозаключениях рассматривается на основе изучения следующего средства их выражения т …   Современный философский словарь

  • ЛОГИКА — (от греч. logos слово, понятие, рассуждение, разум), или Формальная логика, наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или… …   Философская энциклопедия

Книги

Другие книги по запросу «логика высказываний» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.